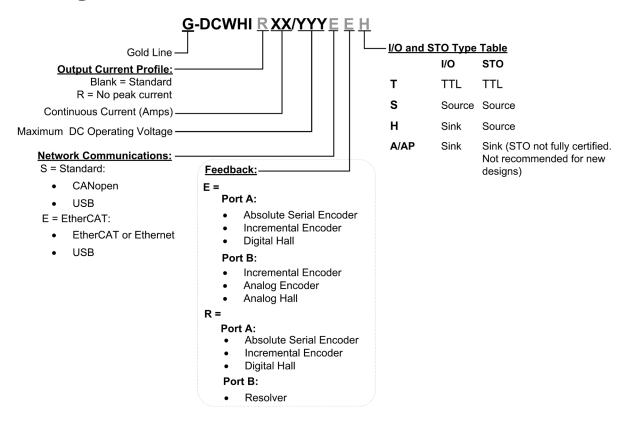
Gold DC Whistle Digital Servo Drive Installation Guide EtherCAT and CAN

Notice

This guide is delivered subject to the following conditions and restrictions:

- This guide contains proprietary information belonging to Elmo Motion Control Ltd. Such
 information is supplied solely for the purpose of assisting users of the Gold DC Whistle servo
 drive in its installation.
- The text and graphics included in this manual are for the purpose of illustration and reference only. The specifications on which they are based are subject to change without notice.
- Information in this document is subject to change without notice.


Document no. MAN-G-DCWHIIG-EC (Ver. 1.705)

Copyright © 2017

Elmo Motion Control Ltd.

All rights reserved.

Catalog Number

Cable Kit

Catalog number: CBL-GDCWHIKIT02 (can be ordered separately).

For further details, see the documentation for this cable kit (MAN-G-DCWHI-CBLKIT.pdf).

Revision History

Version	Date
Ver. 1.700	Jun 2014
Ver. 1.701	Jan 2015
Ver. 1.702	Jul 2015
Ver. 1.703	Oct 2015
Ver. 1.704	May 2016
Ver.1.705	Aug 2017

Chapter	1: 1	his Installation Guide	6
Chapter	2: 9	afety Information	6
2.1.	Warr	ings	7
2.2.		_	
2.3.	CE M	arking Conformance	7
2.4.		-	7
Chapter	3: F	Product Description	8
	3.1.1	. Accessories	
Chapter	4: 1	echnical Information	g
4.1.	Physi	cal Specifications	<u>c</u>
4.2.	Tech	nical Data	g
	4.2.1	. Auxiliary Supply	10
	4.2.2	. Product Features	11
4.3.	Envir	onmental Conditions	12
	4.3.1	. Gold Line	12
4.4.	Gold	Line Standards	13
Chapter	5: I	nstallation	14
5.1.	Unpa	cking the Drive Components	14
5.2.			15
5.3.	Mou	nting the Gold DC Whistle	18
5.4.	The C	Gold DC Whistle Connection Diagra	ım19
Chapter	6: \	Viring	21
6.1.	Basic	Recommendations	22
	6.1.1	. General	22
	6.1.2	. Feedback Cable Port A and Po	rt B Connector23
	6.1.3	. Feedback Cable Port C Connec	tor24
	6.1.4	. IO Cable Connector	24
	6.1.5	. STO (Port C) Cable Connector.	25
6.2.	Moto	or Power Connector Pinouts (J14)	26
6.3.	Main	and Auxiliary Power	28
	6.3.1	. Description	28
	6.3.2	. Main Power (J13)	29
	6.3.3	. Auxiliary Power Supply (J12)	30
	6.3.4	. Connectivity	31
		6.3.4.1. Power Rating 200 V	31
		6.3.4.2. Power Rating 100 V	32
6.4.	Drive	Status Indicator	34

6.5.	STO (Saf	fe Torque Off) (J11)	35
	6.5.1.	Source Mode – PLC Voltage Level	36
	6.5.2.	TTL Mode – TTL Voltage Level	36
	6.5.3.	Sink Mode – PLC Voltage Level	37
6.6.	Port A (J	J1)	38
	6.6.1.	Incremental Encoder	39
	6.6.2.	Halls Sensor	39
	6.6.3.	Absolute Serial Encoder	40
		6.6.3.1. Hiperface	41
6.7.	Port B (J	3)	42
	6.7.1.	Incremental Encoder	43
	6.7.2.	Interpolated Analog Encoder	44
	6.7.3.	Resolver	45
6.8.	Port C, [Digital I/Os, and Analog Inputs (J2)	46
	6.8.1.	Port C – Emulated Encoder Output	48
	6.8.2.	Analog Input	49
	6.8.3.	Digital Input and Output TTL Mode	50
	6.8.4.	Digital Input and Output PLC Source Mode	52
	6.8.5.	Digital Input and Output Sink Mode	54
6.9.	USB 2.0	(J9)	56
6.10.	EtherCA	T Communication Version	57
	6.10.1.	EtherCAT IN/Ethernet Pin Assignments (J7)	57
	6.10.2.	EtherCAT OUT Pin Assignments (J8)	58
	6.10.3.	EtherCAT Wiring	58
	6.10.4.	EtherCAT Status Indicator	59
6.11.	CAN Cor	mmunication Version	60
	6.11.1.	CAN Wiring	61
6.12.	Powerin	ng Up	62
6.13.	Initializi	ng the System	62
Chapter 3	7: Dim	nensions	63

Chapter 1: This Installation Guide

This installation Guide details the technical data, pinouts, wiring and power connectivity of the Gold DC Whistle. For a comprehensive detailed description of the functions refer to the MAN-G-Panel Mounted Drives Hardware manual which describes Panel Mounted products.

Chapter 2: Safety Information

In order to achieve the optimum, safe operation of the Gold DC Whistle, it is imperative that you implement the safety procedures included in this installation guide. This information is provided to protect you and to keep your work area safe when operating the Gold DC Whistle and accompanying equipment.

Please read this chapter carefully before you begin the installation process.

Before you start, ensure that all system components are connected to earth ground. Electrical safety is provided through a low-resistance earth connection.

Only qualified personnel may install, adjust, maintain and repair the servo drive. A qualified person has the knowledge and authorization to perform tasks such as transporting, assembling, installing, commissioning and operating motors.

The Gold DC Whistle contains electrostatic-sensitive components that can be damaged if handled incorrectly. To prevent any electrostatic damage, avoid contact with highly insulating materials, such as plastic film and synthetic fabrics. Place the product on a conductive surface and ground yourself in order to discharge any possible static electricity build-up.

To avoid any potential hazards that may cause severe personal injury or damage to the product during operation, keep all covers and cabinet doors shut.

The following safety symbols are used in this and all Elmo Motion Control manuals:

Warning:

This information is needed to avoid a safety hazard, which might cause bodily injury or death as a result of incorrect operation.

Caution:

This information is necessary to prevent bodily injury, damage to the product or to other equipment.

Important:

Identifies information that is critical for successful application and understanding of the product.

2.1. Warnings

- To avoid electric arcing and hazards to personnel and electrical contacts, never connect/disconnect the servo drive while the power source is on.
- Power cables can carry a high voltage, even when the motor is not in motion. Disconnect the Gold DC Whistle from all voltage sources before servicing.
- The high voltage products within the Gold Line range contain grounding conduits for electric current protection. Any disruption to these conduits may cause the instrument to become hot (live) and dangerous.
- After shutting off the power and removing the power source from your equipment, wait at least 1 minute before touching or disconnecting parts of the equipment that are normally loaded with electrical charges (such as capacitors or contacts). Measuring the electrical contact points with a meter, before touching the equipment, is recommended.

2.2. Cautions

- The maximum DC power supply connected to the instrument must comply with the parameters outlined in this guide.
- When connecting the Gold DC Whistle to an approved isolated auxiliary power supply, connect it through a line that is separated from hazardous live voltages using reinforced or double insulation in accordance with approved safety standards.
- Before switching on the Gold DC Whistle, verify that all safety precautions have been observed and that the installation procedures in this manual have been followed.
- Make sure that the Safe Torque Off is operational

2.3. CE Marking Conformance

The Gold DC Whistle is intended for incorporation in a machine or end product. The actual end product must comply with all safety aspects of the relevant requirements of the European Safety of Machinery Directive 2006/42/EC as amended, and with those of the most recent versions of standards EN 60204-1 and EN ISO 12100 at the least, and in accordance with 2006/95/EC.

Concerning electrical equipment designed for use within certain voltage limits, the Gold DC Whistle meets the provisions outlined in 2006/95/EC. The party responsible for ensuring that the equipment meets the limits required by EMC regulations is the manufacturer of the end product.

2.4. Warranty Information

The products covered in this manual are warranted to be free of defects in material and workmanship and conform to the specifications stated either within this document or in the product catalog description. All Elmo drives are warranted for a period of 12 months from the date of shipment. No other warranties, expressed or implied — and including a warranty of merchantability and fitness for a particular purpose — extend beyond this warranty.

Chapter 3: Product Description

The Gold DC Whistle is an advanced high power density servo drive which delivers up to **1.6 kW of continuous power** or **3.2 kW of peak power** in a 222.5 cc (13.58 in³) package (115 x 75 x 25.8 mm or 4.5" x 3.0" x 1").

This advanced, high power density servo drive provides top performance, advanced networking and built-in safety, as well as a fully featured motion controller and local intelligence. The Gold DC Whistle is powered by a single 12 V - 195 V isolated DC power source (not included) and a "smart" control-supply algorithm enables the drive to operate up to 95V with only one power supply with no need for an auxiliary power supply for the logic.

The Gold DC Whistle can operate as a stand-alone device or as part of a multi-axis system in a distributed configuration on a real-time network.

The Gold DC Whistle drive is easily set up and tuned using Elmo Application Studio (EAS) software tools. As part of the Gold product line, it is fully programmable with the Elmo motion control language. For more about software tools, refer to the Elmo Application Studio Software Manual.

The Gold DC Whistle is available in a variety of options. There are multiple power rating options, two different communications options, a variety of feedback selections and I/O configuration possibilities.

3.1.1. Accessories

Cable Kit, catalog number: CBL-GDCWHIKIT02 (can be ordered separately)

For further details, see the documentation for this cable kit (MAN-G-DCWHI-CBLKIT.pdf).

Chapter 4: Technical Information

4.1. Physical Specifications

Feature	Units	All Types
Weight	g (oz)	267 g (9.42 oz)
Dimensions	mm (in)	115 x 75 x 25.8 mm (4.5" x 3.0" x 1")
Mounting method		Wall Mount / Book Shelf

4.2. Technical Data

Feature	Units	1/100	2.5/100	5/100	10/100	15/100	20/100
Minimum supply voltage	VDC		12				
Nominal supply voltage	VDC				85		
Maximum supply voltage	VDC				95		
Maximum continuous power output	W	80	200	400	800	1200	1600
Efficiency at rated power (at nominal conditions)	%	> 99					
Maximum output voltage		> 95% of DC bus voltage at f = 22 kHz					
Auxiliary power supply	VDC	12 – 95 VDC (up to 6 VA inc. 5 V/2 x 200 mA for encoder)					
Amplitude sinusoidal/DC continuous current	А	1.0	2.5	5	10	15	20
Sinusoidal continuous RMS current limit (Ic)	А	0.7	1.8	3.5	7	10.6	14.1
Peak current limit	А	2 x Ic					

Table 1: Power Ratings

Note on current ratings: The current ratings of the Gold DC Whistle are given in units of DC amperes (ratings that are used for trapezoidal commutation or DC motors). The RMS (sinusoidal commutation) value is the DC value divided by 1.41.small

Elmo now offers a 200 VDC maximum output rating selection of Gold DC Whistle, according to the following technical data:

Feature	Units	3/200	6/200	9/200
Minimum supply voltage	VDC	12		
Nominal supply voltage	VDC	170		
Maximum supply voltage	VDC		195	
Maximum continuous power output	W	480	960	1450
Efficiency at rated power (at nominal conditions)	%	> 99		
Maximum output voltage		> 95% of DC bus voltage at f = 22 kHz		
Auxiliary power supply	VDC	12 to 95 VDC (up to 6 VA inc. 5 V/2 x 200 mA for encoder)		
Amplitude sinusoidal/DC continuous current	А	3	6	9
Sinusoidal continuous RMS current limit (Ic)	А	2.1	4.2	6.3
Peak current limit	А	2 x lc		

4.2.1. Auxiliary Supply

Feature	Details	
Auxiliary power supply	Isolated DC source only	
Auxiliary supply input voltage	12 V to 95 V	
Auxiliary supply input power	≤ 4 VA without external loading	
	≤ 6 VA with full external loading	

4.2.2. Product Features

Main Feature	Details	Presence and No.
sто	TTL, or	٧
	PLC Source, or	٧
	PLC Sink (is not fully certified, and not recommended for new designs)	V
Digital Input	TTL, or	6
Option	PLC Source, or	6
	PLC Sink	6
Digital Output	TTL, or	4
Option	PLC Source, or	4
	PLC Sink	4
Analog Input	Differential ±10V	1
Feedback	Standard Port A, B, & C	٧
Communication	USB	٧
Option	EtherCAT option	V
	CAN option	٧

4.3. Environmental Conditions

You can guarantee the safe operation of the Gold DC Whistle by ensuring that it is installed in an appropriate environment.

4.3.1. Gold Line

Feature	Details
Operating ambient temperature according to IEC60068-2-2	0 °C to 40 °C (32 °F to 104 °F)
Storage temperature	-20 °C to +85 °C (-4 °F to +185 °F)
Maximum non-condensing humidity according to IEC60068-2-78	95%
Maximum Operating Altitude	2,000 m (6562 feet) It should be noted that servo drives capable of higher operating altitudes are available on request.
Mechanical Shock according to IEC60068-2-27	15g / 11ms Half Sine
Vibration according to IEC60068-2-6	5 Hz ≤ f ≤ 10 Hz: ±10mm 10 Hz ≤ f ≤ 57 Hz: 4G 57 Hz ≤ f ≤ 500 Hz:5G

4.4. Gold Line Standards

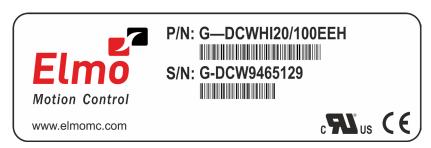
The following table describes the Main Standards of the Gold DC Whistle servo drive. For further details refer to the MAN-G-Panel Mounted Drives Hardware manual.

Main Standards	Item	
The related standards below apply to the performance of the servo drives as stated in the environmental conditions in section 4.3.1 Gold Line above.		
STO IEC 61800-5-2:2007 SIL 3 Adjustable speed electrical power drive systems – Safety requirements – Functional		
EN ISO 13849-1:2008 PL e, Cat 3	Safety of machinery — Safety-related parts of control systems.	
Approved IEC/EN 61800-5-1	Adjustable speed electrical power drive systems Safety requirements – Electrical, thermal and energy	
Recognized UL61800-5-1 Adjustable speed electrical power drive systems Safety requirements – Electrical, thermal and ene		
Recognized UL 508C Power Conversion Equipment		
In compliance with UL 840	Insulation Coordination Including Clearances and Creepage Distances for Electrical Equipment	
Conformity with CE 2006/95/EC Low-voltage directive 2006/95/EC		
Recognized CSA C22.2 NO. 14-13 Industrial Control Equipment		

Chapter 5: Installation

The Gold DC Whistle must be installed in a suitable environment and properly connected to its voltage supplies and the motor.

5.1. Unpacking the Drive Components

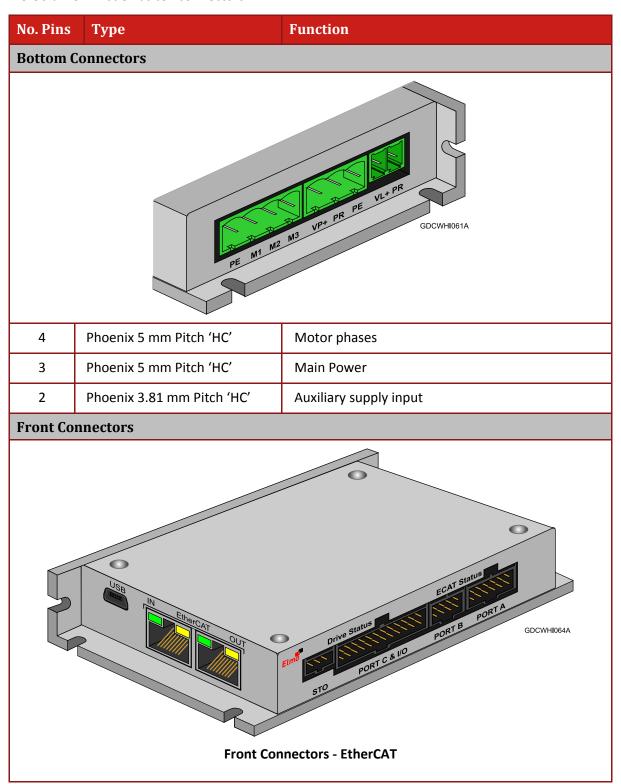

Before you begin working with the Gold DC Whistle, verify that you have all of its components, as follows:

- The Gold DC Whistle servo drive
- The Elmo Application Studio software and software manual

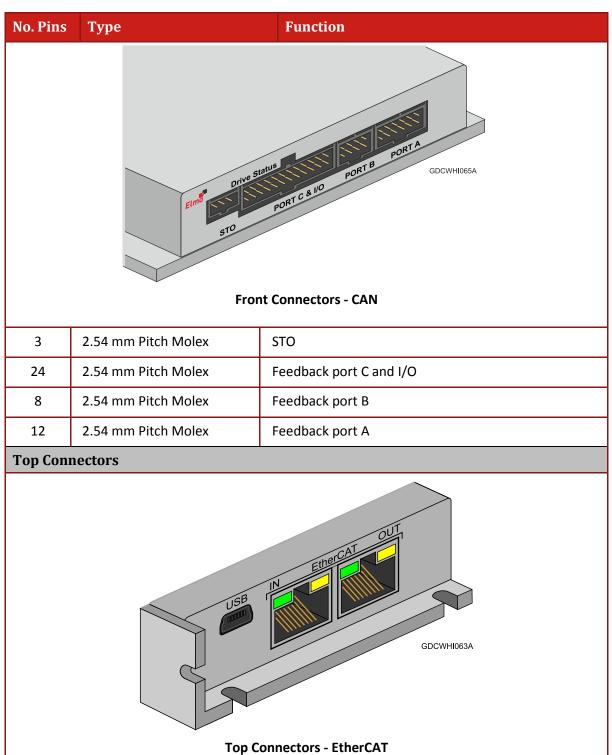
The Gold DC Whistle is shipped in a cardboard box with Styrofoam protection.

To unpack the Gold DC Whistle:

- 1. Carefully remove the servo drive from the box and the Styrofoam.
- 2. Check the drive to ensure that there is no visible damage to the instrument. If any damage has occurred, report it immediately to the carrier that delivered your drive.
- 3. To ensure that the Gold DC Whistle you have unpacked is the appropriate type for your requirements, locate the part number sticker on the side of the Gold DC Whistle. It looks like this:



- 4. Verify that the Gold DC Whistle type is the one that you ordered, and ensure that the voltage meets your specific requirements.
 - The part number at the top provides the type designation. Refer to the appropriate part number in the section Catalog Number at the beginning of the installation guide.



5.2. Connector Types

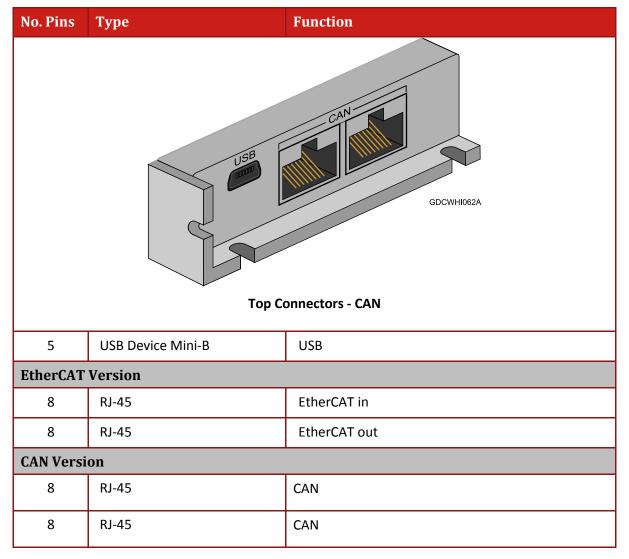

The Gold DC Whistle has ten connectors.

Table 2: Connector Types

The pinouts in Chapter 6: Wiring describe the function of each pin in the Gold DC Whistle connectors that are listed in Table 2.

5.3. Mounting the Gold DC Whistle

The Gold DC Whistle has been designed for two standard mounting options:

- Wall Mount along the back (can also be mounted horizontally on a metal surface)
- Book Shelf along the side

M4 round head screws, one through each opening in the heat sink, are used to mount the Gold DC Whistle (see the diagram below).

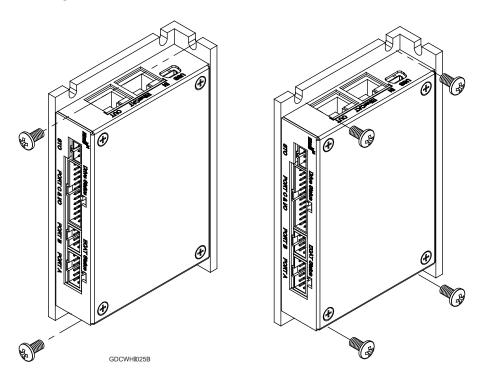


Figure 1: Mounting the Gold DC Whistle

5.4. The Gold DC Whistle Connection Diagram

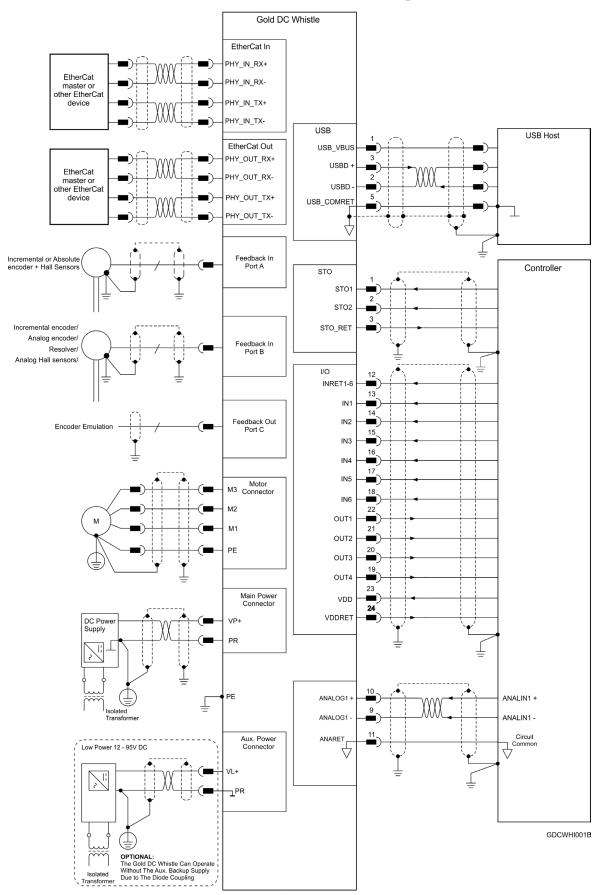


Figure 2: The Gold DC Whistle Connection Diagram – EtherCAT

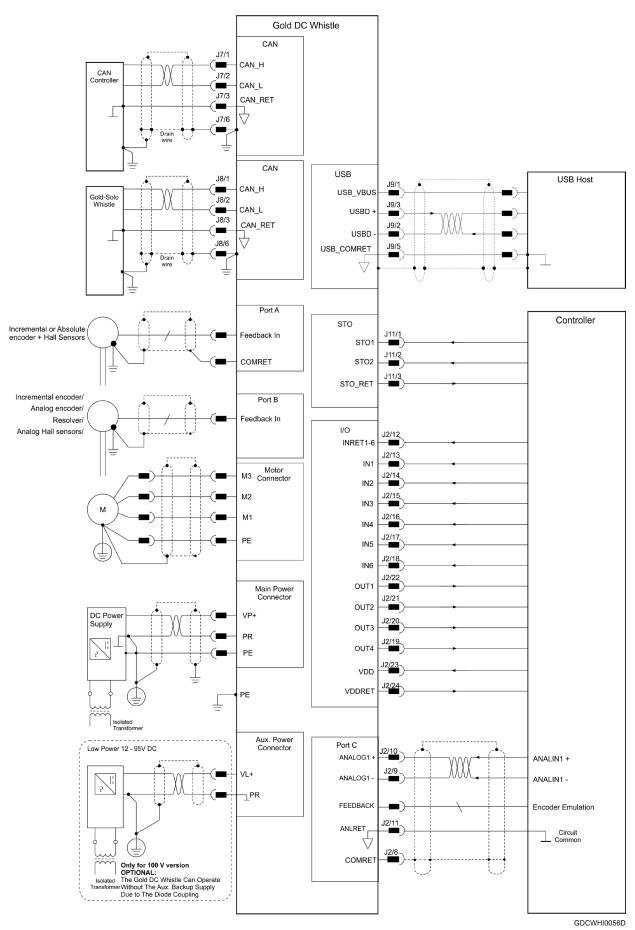


Figure 3: The Gold DC Whistle Connection Diagram - CAN

Chapter 6: Wiring

Once the product is mounted, you are ready to wire the device. Proper wiring, grounding and shielding are essential for ensuring safe, immune and optimal servo performance of the drive.

The following table legend describes the wiring symbols detailed in all installation guides.

Wiring Symbol	Description
	Earth connection (PE)
GGEN_101D-A	
GGEN 101D-B	Protective Earth Connection
GGEN_101D-C	Common at the Controller
/ ^ \	Shielded cable with drain wire.
Drain Wire	The drain wire is a non-insulated wire that is in direct contact with the braid (shielding).
GGEN_101D-D	Shielded cable with drain wire significantly simplifies the wiring and earthing.
GGEN_101D-E	Shielded cable braid only, without drain wire.
GGEN_101D-F	Twisted-pair wires
(*) (*)	Encoder Earthing.
Cable's Drain Wire connected to Chassis-PE	The cable's shield is connected to the chassis (PE) in the connector.
COMRET Connected to Chassis-PE	Earthing the Encoder and connecting the Earth (PE) to the drive COMRET is mandatory to insure reliable operation, high noise immunity and rejection of voltage common mode interferences.

Table of Contents | The Gold DC Whistle Connection Diagram | www.elmomc.com

6.1. Basic Recommendations

6.1.1. General

- Use shielded cables. For best results, the cable should have an aluminum foil shield covered by copper braid, and should contain a drain wire.
 Use 24, 26 or 28 AWG twisted-pair shielded with drain wire cables.
- Keep the cable as short as possible.
 Do not mount the power cables of the motor and power bus in the proximity of the control and feedback cables.
- 3. Ensure that in normal operating conditions, the "earth connection" wires and shield of the control cables *carry no current*. The only time these conductors carry current is under abnormal conditions, when electrical equipment has become a potential shock or fire hazard while conducting external EMI interferences directly to ground, in order to prevent them from affecting the drive. Failing to meet this requirement might result in drive/controller/host failure.
- 4. After completing the wiring, carefully inspect all wires to ensure tightness, good solder of joints and general safety.

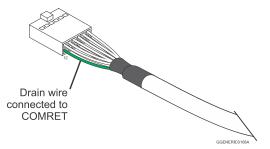


Figure 4: Feedback and Molex Control Cable Assemblies

Note: Please pay attention to the location of PIN 1 in the above connector diagram.

It should be noted that in all Elmo manuals the pinouts are shown differently to Molex's technical sheets. Molex shows pin 1 at the bottom-left when looking at the face of the cable-side connector, tab down (Figure 5).

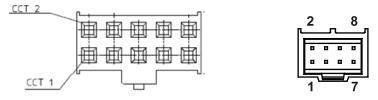
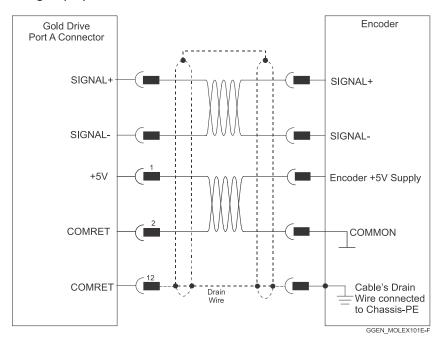


Figure 5: Molex vs Elmo Technical Diagram Examples Showing Pinout Numbers

However, Elmo specifies pin 1 as the bottom-left of drive-side connector. The result is that Elmo's pin designations are mirrored relative to the pinouts as labeled by Molex.

Where there is only one COMRET pin (Common Return) in the connector, which MUST be connected to the DRAIN WIRE and also to COMRET signal of the cable, it is necessary to connect the drain wire and COMRET signal to the same pin.


6.1.2. Feedback Cable Port A and Port B Connector

- 1. On the motor side connections, ground the shield to the motor chassis.
- **2.** At least One COMRET (Common Return) must be connected to the PE.

Implement the following steps to connect the COMRET to the PE:

- a. At the drive, connect the feedback drain wire to one of the COMRET terminals in the Molex feedback connector (Figure 5.
- b. At the motor, connect the feedback cable drain wire to the GND motor chassis terminal of the feedback connector (Figure 6).

The drawing displays two earth connections.

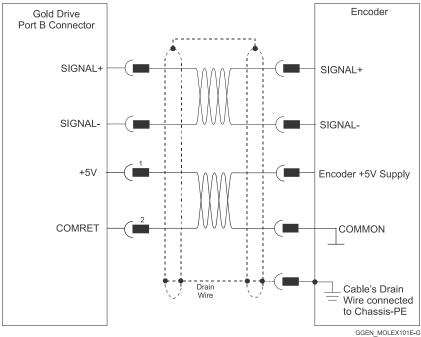


Figure 6: Feedback Port A and B Cable Assemblies

6.1.3. Feedback Cable Port C Connector

- 1. At the controller side connections, follow the controller manufacturer's recommendations concerning the shield.
- 2. The connection of the Drain wire to the Port C is not mandatory.

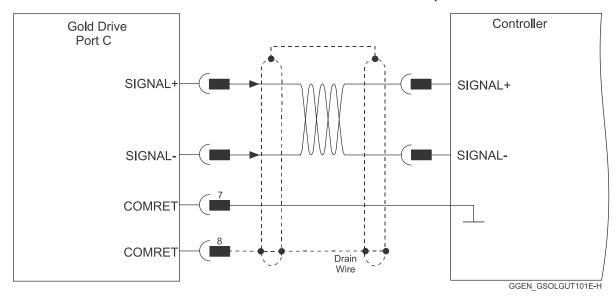


Figure 7: Feedback Port C Cable Assemblies

6.1.4. IO Cable Connector

It is recommended to use shielded cable, but is not mandatory.

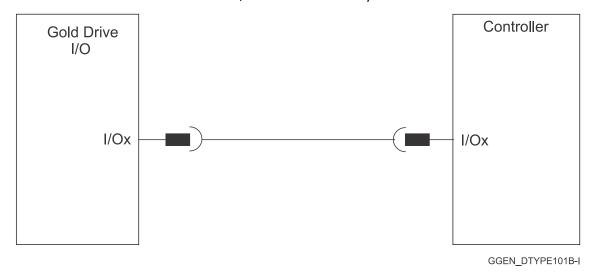


Figure 8: Feedback IO Cable Assemblies

6.1.5. STO (Port C) Cable Connector

It is recommended to use shielded cable, but is not mandatory.

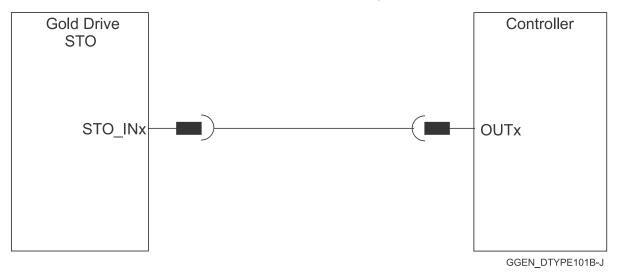
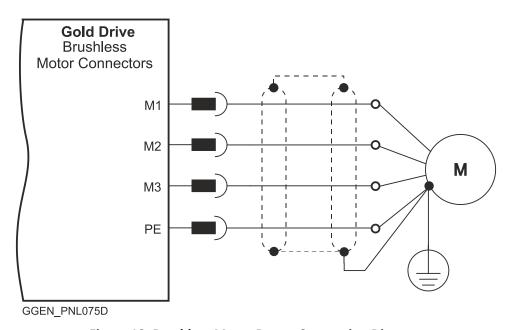


Figure 9: STO Cable Assemblies



6.2. Motor Power Connector Pinouts (J14)

See Chapter 8 in the in the MAN-G-Panel Mounted Drives Hardware manual for full details.

Pin (J14)	Signal	Function	Cable	
			Brushless Motor	Brushed DC Motor
1	PE	Protective Earth	Motor	Motor
2	M1	Motor phase	Motor	N/C
3	M2	Motor phase	Motor	Motor
4	M3	Motor phase	Motor	Motor
		Denix 5 mm Pitch 'HO		Motor Cable Motor Cable 4-Pin Phoenix Plug-in Connector

Table 3: Connectors for Motor

Figure 10: Brushless Motor Power Connection Diagram

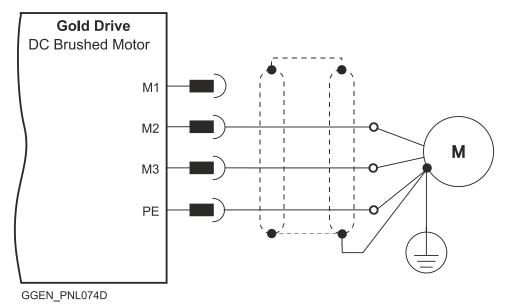


Figure 11: Brushed Motor Power Connection Diagram

6.3. Main and Auxiliary Power

The Gold DC Whistle receives power from main and auxiliary supplies and delivers power to the motor.

6.3.1. Description

This section describes the Main and Auxiliary Power for power ratings 200V and 100V, and provides details for the optional Backup (Auxiliary) Supply.

- The Gold DC Whistle Power rating is 12 to 195 VDC
- There are Two power ratings for Gold DC Whistle; 100V and 200V:

Power rating of 200V

Two power isolated DC power sources are required, main power 12 - 195V and Auxiliary Power 12-95V for the logic.

Power rating of 100V

Single DC Power Supply - Power to the Gold DC Whistle is provided by a 12–95 VDC single isolated DC power source (not included with the Gold DC Whistle). A "smart" control-supply algorithm enables the Gold DC Whistle to operate with only one power supply with no need for an auxiliary power supply for the logic.

Optional Backup (Auxiliary) Supply

If backup functionality is required in case of power loss, e.g., to keep the original position, a 12–95 VDC external isolated supply should be connected (via the Gold DC Whistle's VL+ terminal). This is more flexible than the requirement for 24 VDC supply.

If backup is not needed, a single power supply is used for both the power and logic circuits. There are two voltage ratings of the Gold DC Whistle, therefore the correct power supply must be used, according to the maximum operating voltage of the Gold DC Whistle. Refer to section 4.2 Technical Data.

6.3.2. **Main Power (J13)**

Pin (J13)	Signal	Function	Cable
1	VP+	Positive Power input	DC Power
2	PR	Power return	DC Power
3	PE	Protective Earth	DC Power
	3-Pin Phoenix	Power Cable Power Cable 3-Pin Phoenix Plug-in Connector	

Table 4: Connectors for Main Power

Connect the DC power cable to the VP+ and PR terminals on the Main Power Connector.

To connect the DC power supply:

- 1. The source of the 12 to 195 VDC power supply must be isolated.
- 2. For best immunity, it is highly recommended to use twisted and shielded cables for the DC power supply. A 3-wire shielded cable should be used. The gauge is determined by the actual current consumption of the motor.
- 3. Connect the cable shield to the closest ground connection near the power supply.
- 4. Connect the PE to the closest ground connection near the power supply.
- 5. Connect the PR to the closest ground connection near the power supply.
- 6. Before applying power, first verify the polarity of the connection.

6.3.3. Auxiliary Power Supply (J12)

Pin (J12)	Signal	Function	Cable
1	VL+	Auxiliary Supply Input	DC Power
2	PR	Auxiliary Supply Return	DC Power
	2-Pin Pho	Aux. Power Cable 2-Pin Phoenix Plug-in Connector	

Table 5: Aux. Power Connector – Pin Assignments

Caution:

Power from the Gold DC Whistle to the motor must come from the Main Supply and **not** from the Auxiliary Supply.

The backup functionality can be used for storing control parameters in case of power-outs, providing maximum flexibility and backup capability when needed.

Connect the VL+ and PR terminal to the Auxiliary Connector.

To connect the auxiliary supply:

- 1. The source of the Auxiliary Supply must be isolated.
- 2. For safety reasons, connect the return (common) of the auxiliary supply source to the closest ground near the auxiliary supply source
- 3. Connect the cable shield to the closest ground near the auxiliary supply source
- 4. Before applying power, first verify the polarity of the connection.

6.3.4. Connectivity

6.3.4.1. Power Rating 200 V

For Power Rating 200 V, two power isolated DC power sources are required, main power **12 - 195V** and auxiliary Power **12-95V** for the logic.

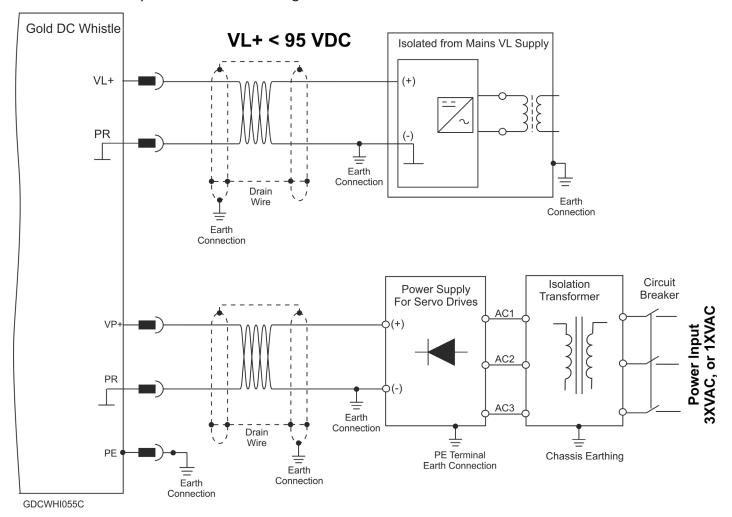


Figure 12: 200 VDC Power Source Connection Diagram

6.3.4.2. Power Rating 100 V

6.3.4.2.a Single Power Supply

For power rating $100\,V$, a single Power Supply is required which contains a "smart" control-supply algorithm, enabling the Gold DC Whistle to operate with only one power supply with no need for an auxiliary power supply for the logic.

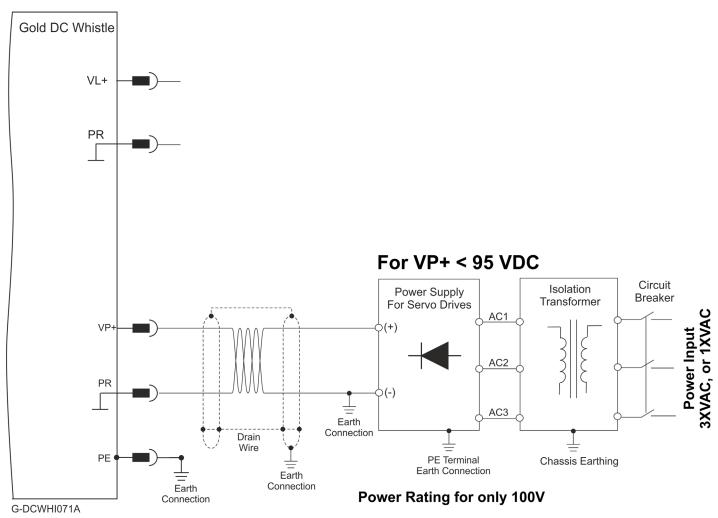


Figure 13: Main Power Supply Connection Diagram (no Auxiliary Supply)

6.3.4.2.b Optional Backup Supply

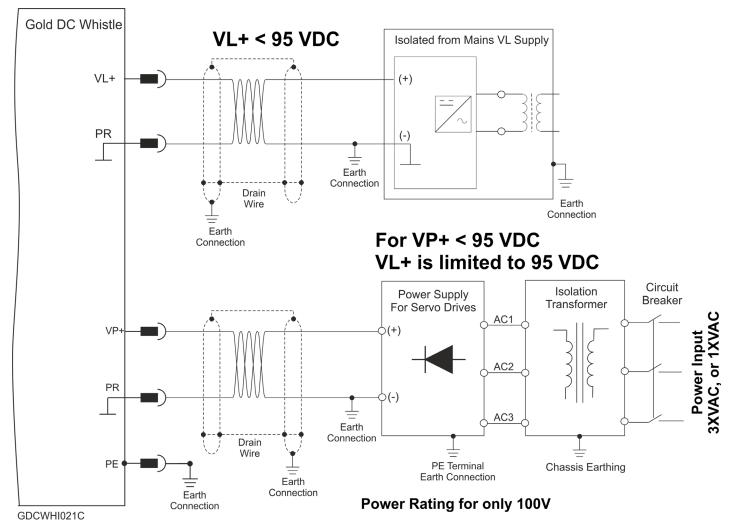


Figure 14: Auxiliary Power Supply Connections Diagram

6.4. Drive Status Indicator

Figure 15 shows the position of the red/green dual LED, which is used for immediate indication of the Initiation and Working states. For details refer to Chapter 7 Drive Status Indicator, in the MAN-G-Panel Mounted Drives Hardware manual.

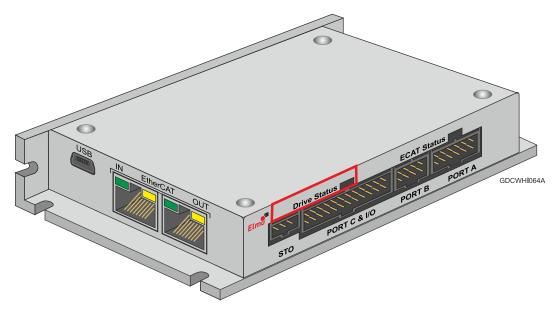


Figure 15: Drive Status Indicator - EtherCAT

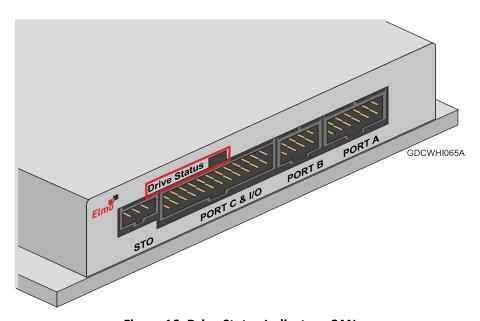


Figure 16: Drive Status Indicator - CAN

The red/green dual LED is used for immediate indication of the following states:

- **Initiation state:** In this state the LED indicates whether the drive is in the boot state (blinking red) or in the operational state (steady red).
- Working state: In this state the LED indicates whether the drive is in an amplifier failure state (red) or is ready to enable the motor (green).

6.5. STO (Safe Torque Off) (J11)

See Chapter 9 in the in the MAN-G-Panel Mounted Drives Hardware manual for full details.

Pin (J11)	Signal	Function
1	STO1	STO1 input (default 24 V)
2	STO2	STO2 input (default 24 V)
3	STO_RET	STO signal return
EIMO	PORT A GDCWHI060A PORT B PORT A GDCWHI060A GDCWHI067A 3-Pin 2.54 mm Pitch Molex	3-Pin Molex Plug This cable is included in the cable kit described in Section 3.1.1.

Table 6: STO Input – Pin Assignments

6.5.1. Source Mode - PLC Voltage Level

Refer to the diagrams below for the PLC Source option connection.

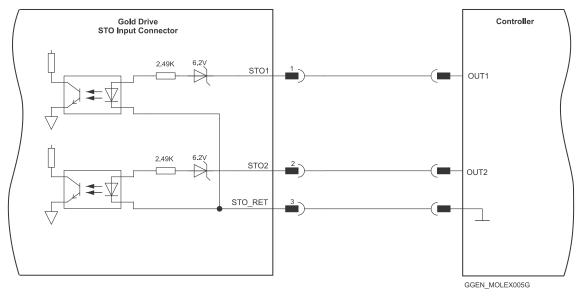


Figure 17: STO Molex Type Input Connection – PLC Source Option

6.5.2. TTL Mode - TTL Voltage Level

Refer to the diagrams below for TTL option connection.

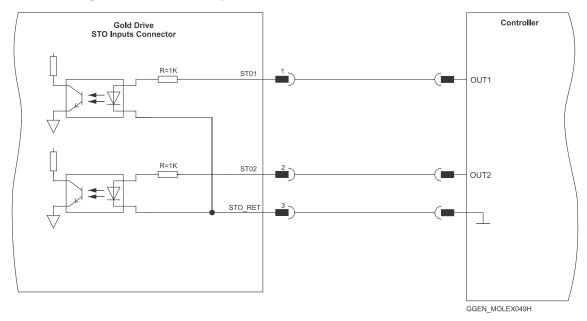


Figure 18: STO Input Connection – TTL Option

6.5.3. Sink Mode - PLC Voltage Level

Refer to the diagrams below for the PLC Sink option connections which is not fully certified for STO. **This option is not recommended for new designs.**

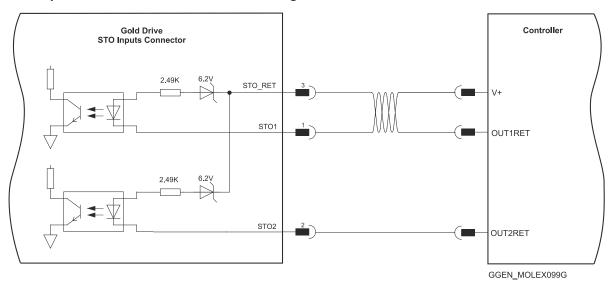


Figure 19: STO Input Connection – Sink Option

6.6. Port A (J1)

See Section 10.3 in the in the MAN-G-Panel Mounted Drives Hardware manual for full details.

1 +5 2 CC 3 Po 4 Po 5 Po 6 Po 7 Po 8 Po 9 HA 10 HE	Signal SOMRET COMRET CORTA_ENC_A+ CORTA_ENC_B+ CORTA_ENC_B- CORTA_ENC_INDEX+ CORTA_ENC_INDEX+	Function Encoder +5V supply Common return Channel A + Channel A - Channel B+ Channel B - Index+	Signal +5V COMRET ABS_CLK+ ABS_CLK- ABS_DATA+ ABS_DATA-	Function Encoder +5V supply Common return Absolute encoder clock+ Absolute encoder clock- Absolute encoder data+ Absolute encoder data-
2 CC 3 Po 4 Po 5 Po 6 Po 7 Po 8 Po 9 HA 10 HE 11 HC	COMRET PortA_ENC_A+ PortA_ENC_B+ PortA_ENC_B- PortA_ENC_INDEX+	Common return Channel A + Channel A - Channel B+ Channel B -	COMRET ABS_CLK+ ABS_CLK- ABS_DATA+	Common return Absolute encoder clock+ Absolute encoder clock- Absolute encoder data+
3 Po 4 Po 5 Po 6 Po 7 Po 8 Po 9 HA 10 HE 11 HC	PortA_ENC_A- PortA_ENC_B+ PortA_ENC_B- PortA_ENC_INDEX+	Channel A + Channel A - Channel B+ Channel B -	ABS_CLK+ ABS_CLK- ABS_DATA+	Absolute encoder clock+ Absolute encoder clock- Absolute encoder data+
4 Po 5 Po 6 Po 7 Po 8 Po 9 HA 10 HE 11 HC	PortA_ENC_A- PortA_ENC_B+ PortA_ENC_B- PortA_ENC_INDEX+	Channel A - Channel B+ Channel B -	ABS_CLK- ABS_DATA+	Absolute encoder clock- Absolute encoder data+
5 Po 6 Po 7 Po 8 Po 9 HA 10 HE 11 HC	PortA_ENC_B+ PortA_ENC_B- PortA_ENC_INDEX+	Channel B+ Channel B -	ABS_DATA+	Absolute encoder data+
6 Po 7 Po 8 Po 9 HA 10 HE 11 HC	PortA_ENC_B-	Channel B -		
7 Po 8 Po 9 HA 10 HE 11 HC	PortA_ENC_INDEX+		ABS_DATA-	Absolute encoder data-
8 Po 9 HA 10 HE 11 HC		Index+		•
9 HA 10 HE 11 HC 12 CC	ortA_ENC_INDEX-		Reserved	Reserved
10 HE 11 HC 12 CC		Index -	Reserved	Reserved
11 HC	IA	Hall sensor A	НА	Hall sensor A
12 CC	IB	Hall sensor B	НВ	Hall sensor B
	IC	Hall sensor C	НС	Hall sensor C
Pin Position	COMRET	Common Return	COMRET	Common Return
	ns			Cable Connector
	porive Status Porive Status 1 12-Pin 2.54	12-Pin Molex Plug This cable is included in the cable kit described in Section 3.1.1.		

Table 7: Port A Pin Assignments

6.6.1. Incremental Encoder

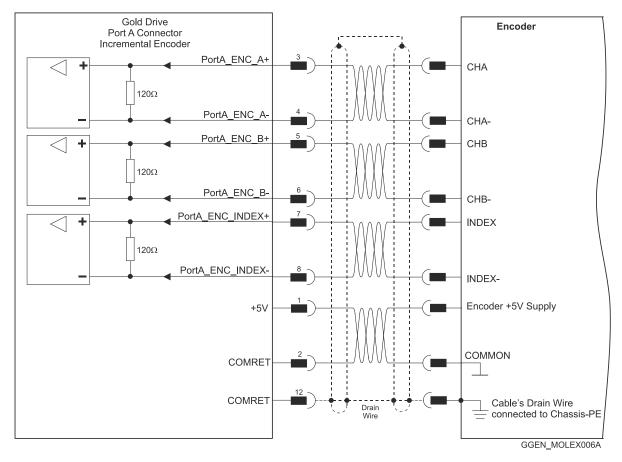


Figure 20: Port A Molex Type Incremental Encoder Input – Recommended Connection Diagram

6.6.2. Halls Sensor

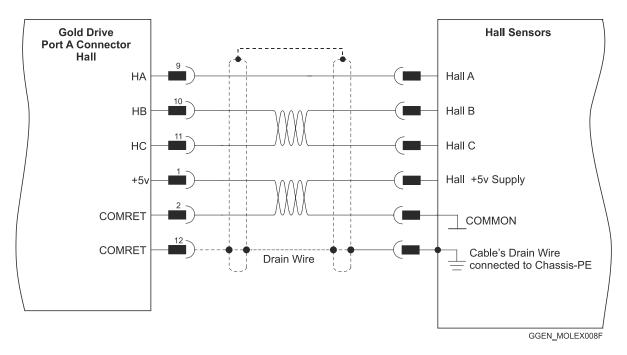


Figure 21: Molex Type Hall Sensors Connection Diagram

6.6.3. Absolute Serial Encoder

The following figures describe the connections at Port A for the Absolute Serial type encoders.

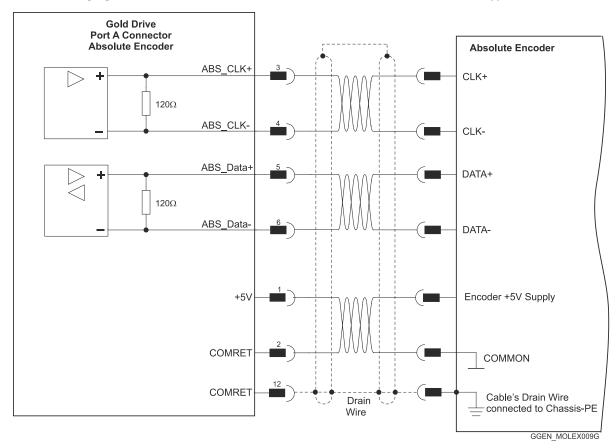


Figure 22: Absolute Serial Encoder - Recommended Connection Diagram for EnDAT, Biss, SSI

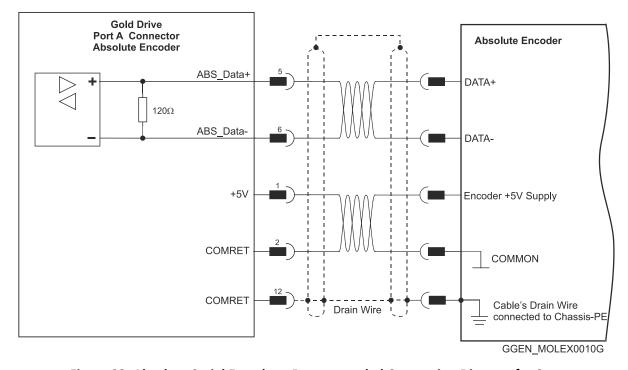


Figure 23: Absolute Serial Encoder – Recommended Connection Diagram for Sensors Supporting Data Line Only (NRZ types, e.g., Panasonic / Mitutoyo / Sanyo Danki / Tamagawa)

6.6.3.1. Hiperface

The following figure describes the connection diagram.

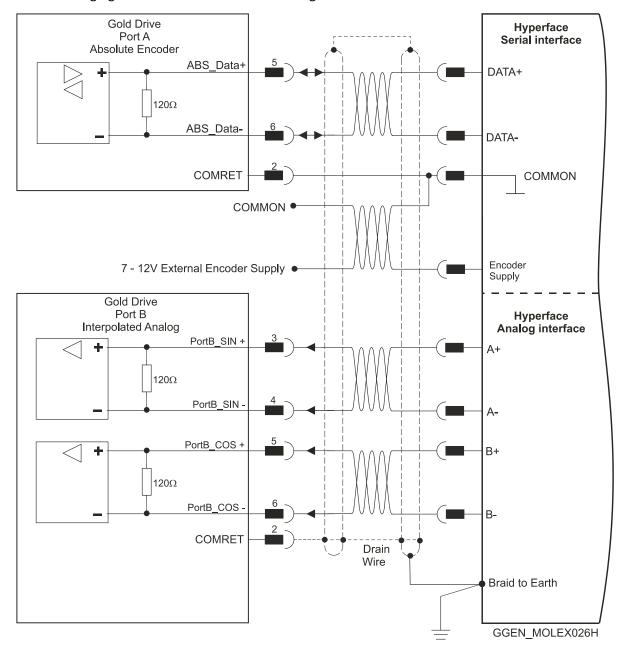


Figure 24: Absolute Serial Encoder – Recommended Molex Type Connection Diagram for Stegmann Hiperface

6.7. Port B (J3)

See Section 10.4 in the in the MAN-G-Panel Mounted Drives Hardware manual for full details.

	Incremental or Interpolated Analog Encoder		Resolver		
	G-DCWHIXXX/YYYYEXX		G-DCWHIXXX/YYYYRXX		
Pin (J3)	Signal	Function	Signal	Function	
1	+5V	Encoder +5V supply	NC		
2	COMRET	Common return	COMRET	Common return	
3	PortB_ENC_A+/SIN+	Channel A+/Sine+	SIN+	Sine+	
4	PortB_ENC_A-/SIN-	Channel A -/Sine-	SIN-	Sine-	
5	PortB_ENC_B+/COS+	Channel B+/Cosine+	COS+	Cosine+	
6	PortB_ENC_B-/COS-	Channel B-/Cosine-	COS-	Cosine-	
7	PortB_ENC_INDEX+/ Analog_Index+	Channel_Index+/ Analog_Index+	RESOLVER_OUT +	Vref f=1/TS, 50 mA Max.	
8	PortB_ENC_INDEX-/ Analog_Index-	Channel_Index- / Analog_Index-	RESOLVER_OUT-	Vref complement f= 1/TS, 50 mA Maximum	
Pin Positions			Cal	ble Connector	
		5			
	Drive Status PORT	C & NO PORT B PORT A	GDCWHI060A	8-Pin Molex Plug his cable is included in	

Table 8: Port B Pin Assignments

6.7.1. Incremental Encoder

The following figure describes the connections at Port B for the Incremental encoder.

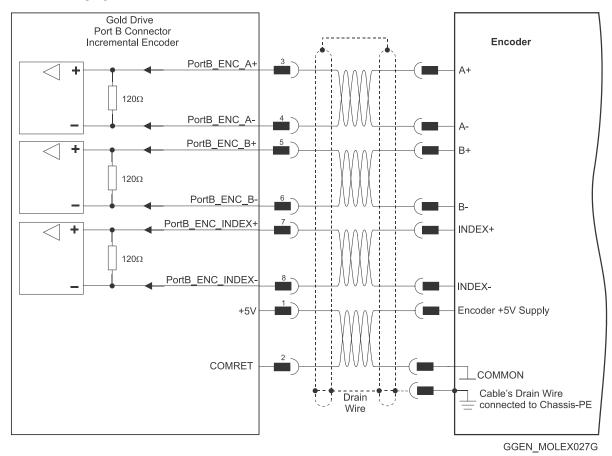


Figure 25: Port B Incremental Encoder Input – Recommended Connection Diagram

6.7.2. Interpolated Analog Encoder

The following figure describes the connections at Port B for the Interpolated Analog encoder.

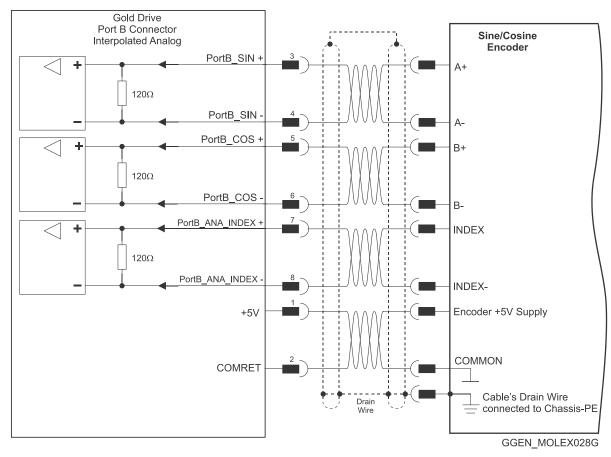


Figure 26: Port B - Interpolated Analog Encoder Molex Type Connection Diagram

6.7.3. Resolver

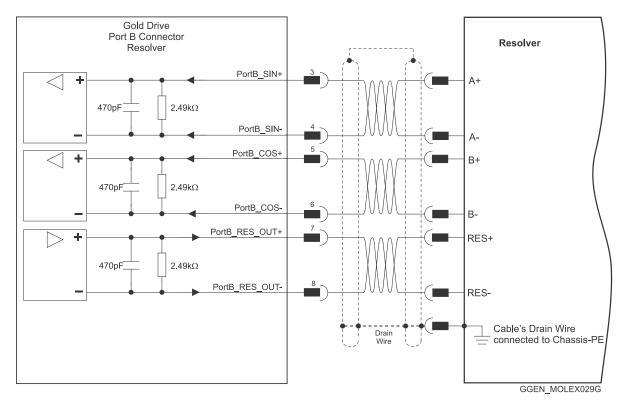


Figure 27: Port B – Resolver Molex Type Connection Diagram

6.8. Port C, Digital I/Os, and Analog Inputs (J2)

The Port C connector includes the following functions:

- Port C: Refer to Sections 10.5 in the in the MAN-G-Panel Mounted Drives Hardware manual for full details
- I/O: Refer to Chapter 11 in the in the MAN-G-Panel Mounted Drives Hardware manual for full details.
- Analog input: See Section 11.2 in the in the MAN-G-Panel Mounted Drives Hardware manual for full details.

Pin (J2)	Signal	Function
1	PortC_ENCO_A+	Buffered Channel A output
2	PortC_ENCO_A-	Buffered Channel A complement output
3	PortC_ENCO_B+	Buffered Channel B output
4	PortC_ENCO_B-	Buffered Channel B complement output
5	PortC_ENCO_Index+	Buffered INDEX output
6	PortC_ENCO_Index-	Buffered INDEX complement output
7	COMRET	Common return
8	COMRET	Common return
9	ANALOG1-	Analog input complement
10	ANALOG1+	Analog input
11	ANARET	Analog return
12	INRET1_6	Programmable input 1 – 6 return
13	IN1	Programmable digital input 1
14	IN2	Programmable digital input 2
15	IN3	Programmable digital input 3
16	IN4	Programmable digital input 4
17	IN5	Programmable digital input 5
18	IN6	Programmable digital input 6
19	OUT4	Programmable output 4
20	OUT3	Programmable output 3
21	OUT2	Programmable output 2
22	OUT1	Programmable output 1
23	VDD	VDD supply. Refer to MAN-G-Panel Mounted Drives Hardware Manual for VDD specification
24	VDDRET	VDD supply return

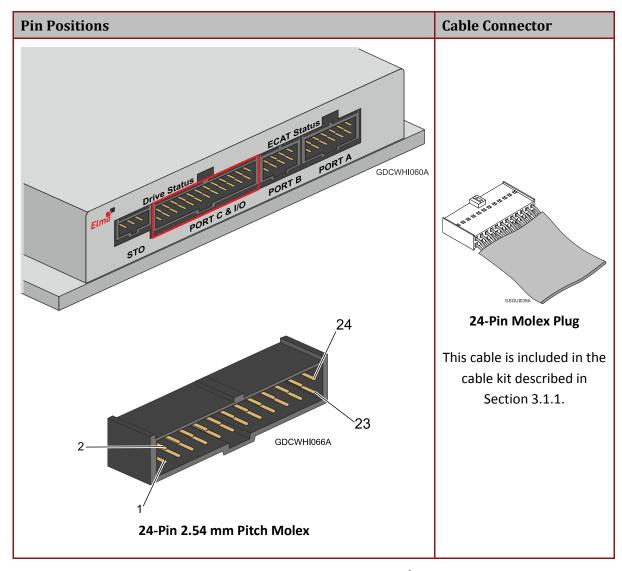


Table 9: Port C Feedback Out and I/O

6.8.1. Port C - Emulated Encoder Output

The following figure describes the connections at Port C for the Emulated Encoder Differential.

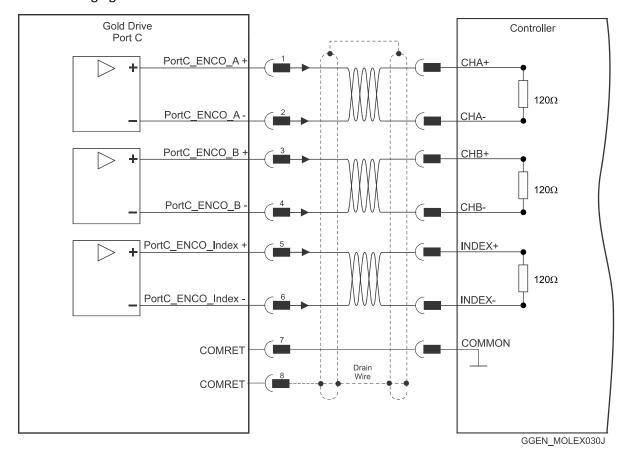
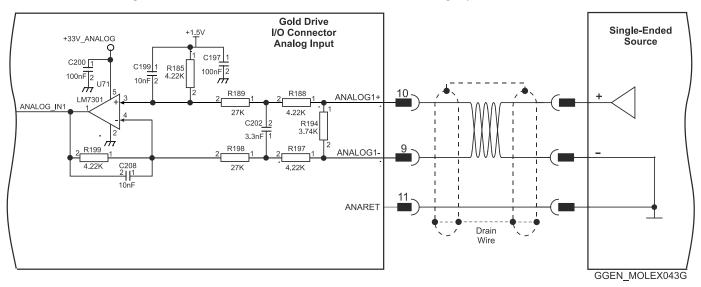



Figure 28: Emulated Encoder Differential Output – Recommended Connection Diagram Note that the user is required to connect a 120 Ω termination at the end of each differential line.

6.8.2. Analog Input

The following circuit describes the internal interface of the Analog input.

Figure 29: Differential Analog Input

6.8.3. Digital Input and Output TTL Mode

The following figure describes the connections at the I/O Port for the Digital Input and Output TTL Mode.

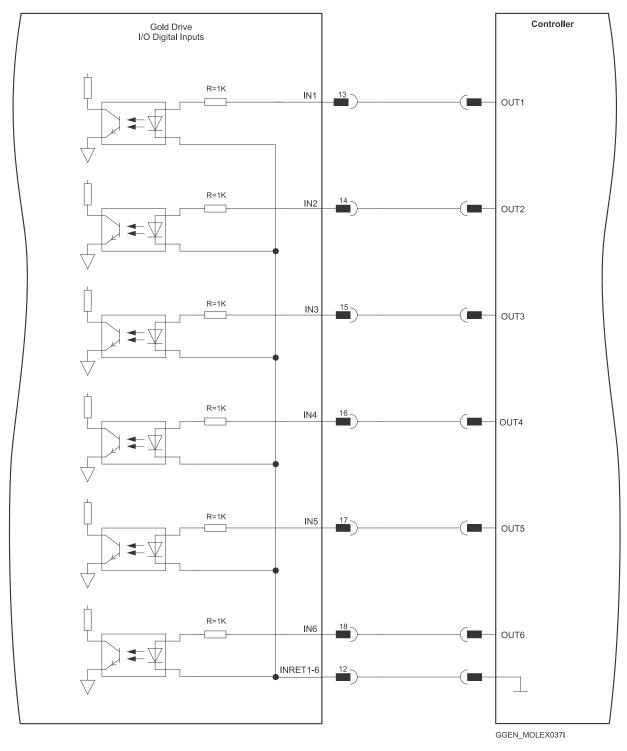


Figure 30: Digital Input TTL Mode Connection Diagram

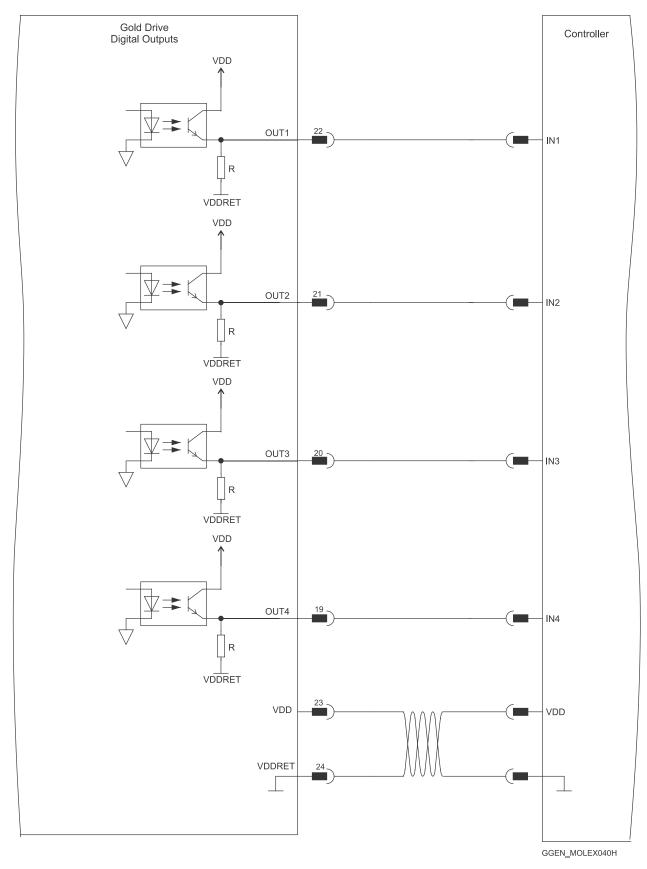


Figure 31: Digital Output Connection Diagram – TTL Option

6.8.4. Digital Input and Output PLC Source Mode

The following figure describes the connections at the I/O Port for the Digital Input and Output PLC Mode.

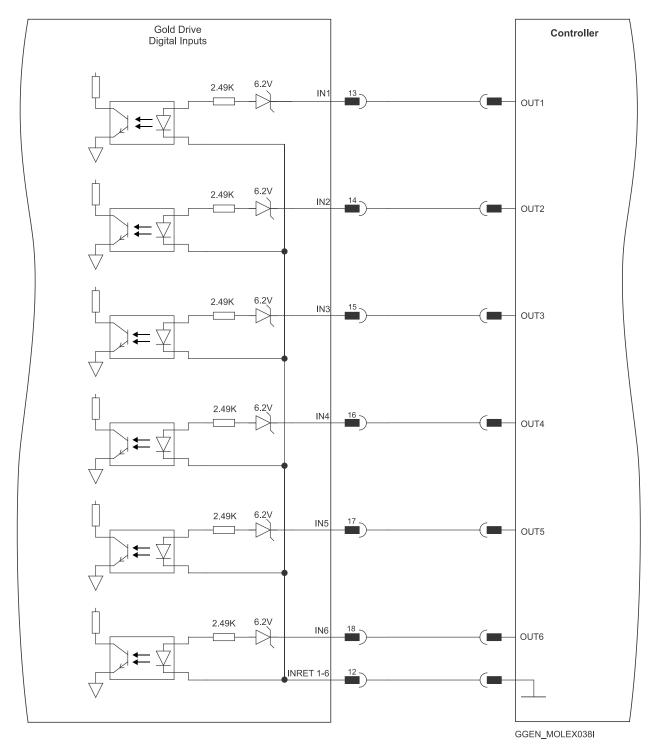


Figure 32: Digital Input Connection Diagram – Source PLC Option

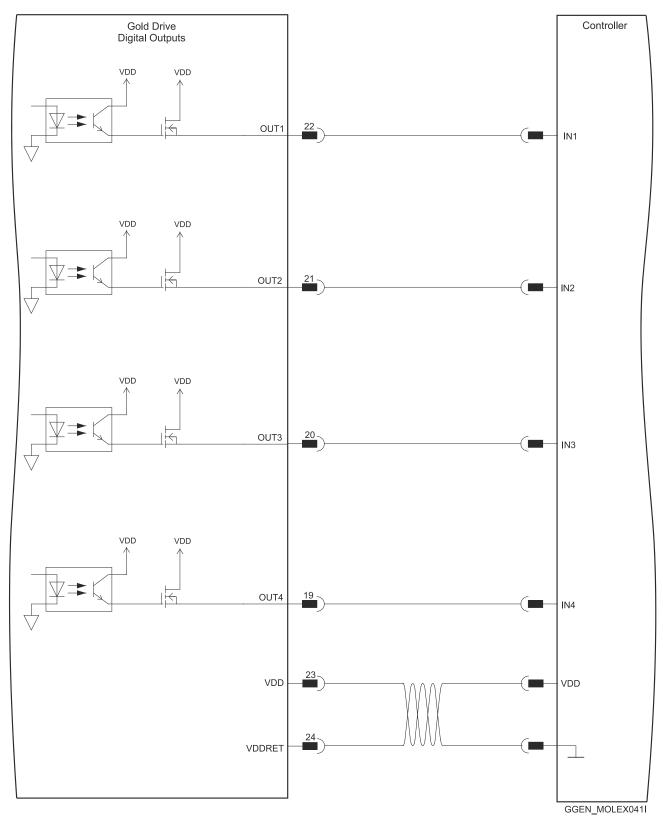


Figure 33: Digital Output Connection Diagram – Source PLC Option

6.8.5. Digital Input and Output Sink Mode

The following figure describes the connections at the I/O Port for the Digital Input and Output Sink Mode.

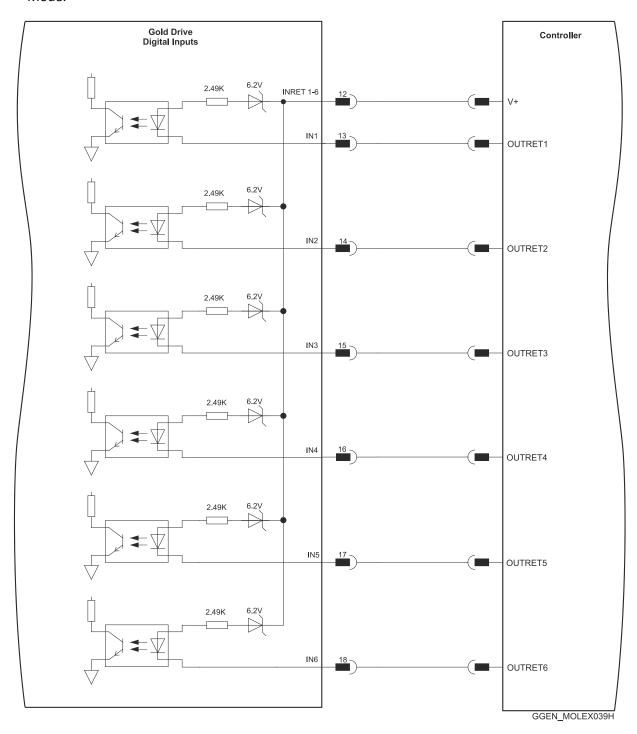


Figure 34: Digital Input Sink Mode – PLC voltage level Molex Type Connection Diagram

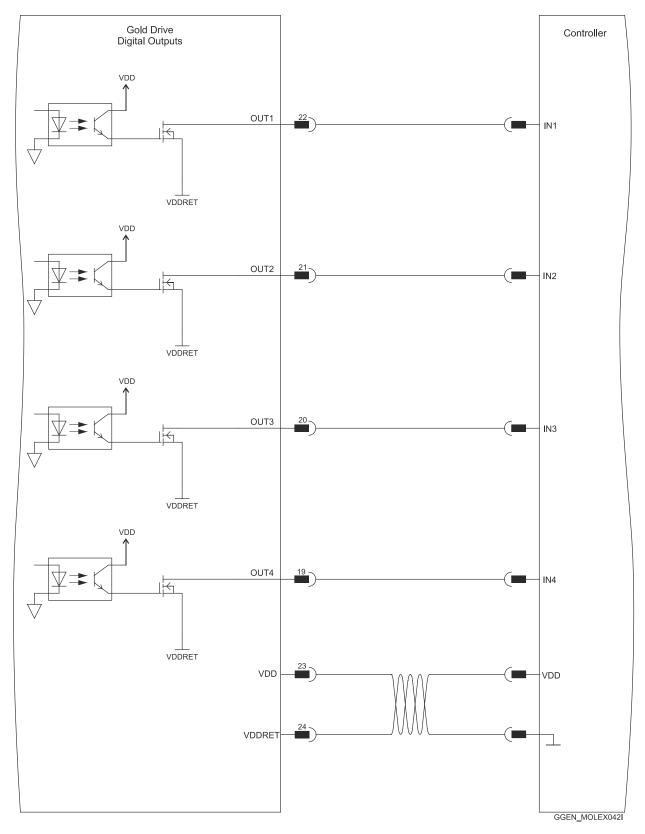


Figure 35: Digital Output as Sink Configuration Molex Type Connection Diagram

6.9. USB 2.0 (J9)

See Section 12.1 in the in the MAN-G-Panel Mounted Drives Hardware manual for full details.

Pin (J9)	Signal	Func	ction
1	USB VBUS	USB	VBUS 5 V
2	USBD-	USB ₋	_N line
3	USBD+	USB ₋	_P line
5	USB COMRET	USB communication return	
Pin Positi	ons		Cable Connector
	USB Device Mini-B	HI063A	GDCWHID26A USB Device Mini-B Plug

Table 10: USB 2.0 Pin Assignments

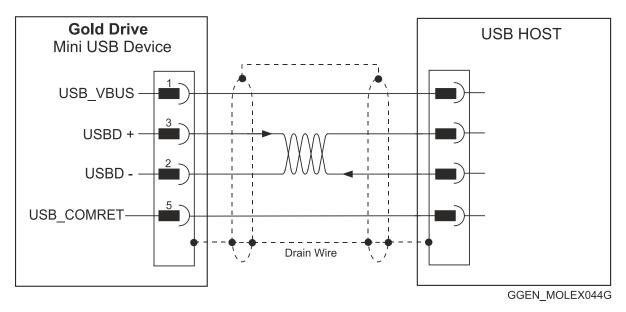
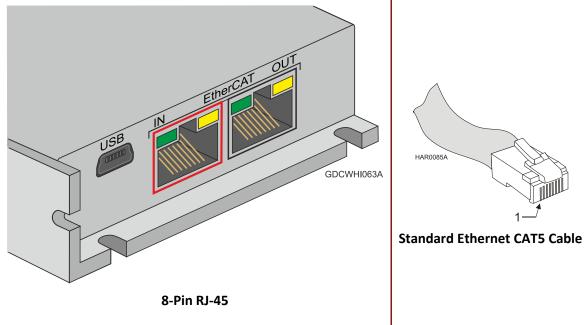


Figure 36: USB Network Diagram

6.10. EtherCAT Communication Version


Fieldbus communications are industrial network protocols for real-time distributed control that allows connection of servo drives. The Gold DC Whistle supports the following EtherCAT fieldbus type industrial network protocol:

Fieldbus Type	Product Number
EtherCAT	G-DCWHI XX/YYYEXX

6.10.1. EtherCAT IN/Ethernet Pin Assignments (J7)

Refer to section 12.2 in the MAN-G-Panel Mounted Drives Hardware manual for more details.

Refer to section 12.2 in the MAN-G-Panel Mounted Drives Hardware manual for more details.				
Pin (J7)	Signal	Function		
1	EtherCAT_IN_TX+/Ethernet_TX+	EtherCAT in/Ethernet transmit +		
2	EtherCAT_IN_TX-/Ethernet_TX-	EtherCAT in/Ethernet transmit -		
3	EtherCAT_IN_RX+/Ethernet_RX+	EtherCAT in/Ethernet receive +		
4, 5	N/A			
6	EtherCAT_IN_RX-/Ethernet_RX-	EtherCAT in/Ethernet receive -		
7, 8	N/A			
Connecto	Connectors			
		>		
	OUT OUT			

6.10.2. EtherCAT OUT Pin Assignments (J8)

See Section 12.2 in the MAN-G-Panel Mounted Drives Hardware manual for the electrical diagram.

Pin (J8)	Signal	Function
1	EtherCAT_OUT_TX+	EtherCAT out transmit +
2	EtherCAT_OUT_TX-	EtherCAT out transmit -
3	EtherCAT_OUT_RX+	EtherCAT out receive +
4, 5	N/A	
6	EtherCAT_OUT_RX-	EtherCAT out receive -
7, 8	N/A	
Connecto	rs	
	8-Pin RJ-45	HAR0085A 1 Standard Ethernet CAT5 Cable

6.10.3. EtherCAT Wiring

Figure 37 describes the wiring diagram for the EtherCAT connections.

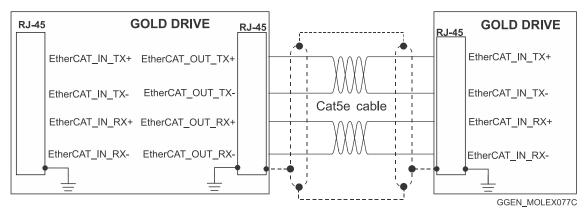


Figure 37: EtherCAT RJ-45 Connections

6.10.4. EtherCAT Status Indicator

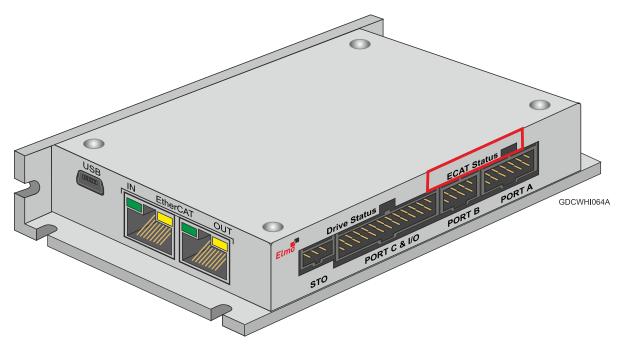


Figure 38: EtherCAT Status LED

The EtherCAT status indicator is a single red/green dual bi-colored LED that combines the green RUN indicator and the red ERROR indicator of the EtherCAT state machine. For further details, see the EtherCAT Application Manual.

Note: There is no Gold DC Whistle ECAT Status indicator equivalent in the CAN version, refer to the figure below.

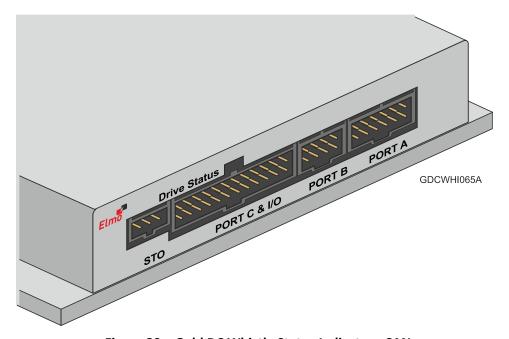


Figure 39: Gold DC Whistle Status Indicator - CAN

6.11. CAN Communication Version

Fieldbus communications are industrial network protocols for real-time distributed control that allows connection of servo drives. The Gold DC Whistle supports the following CAN fieldbus type industrial network protocol:

Fieldbus Type	Product Number
CAN	G-DCWHI XX/YYYSXX

See Section 12.4 in the MAN-G-Panel Mounted Drives Hardware manual for the electrical diagram.

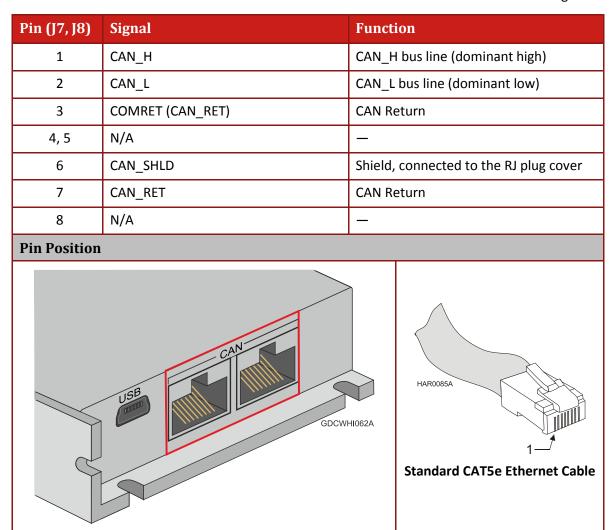


Table 11: CAN In/Out Connectors Pin Assignments

6.11.1. CAN Wiring

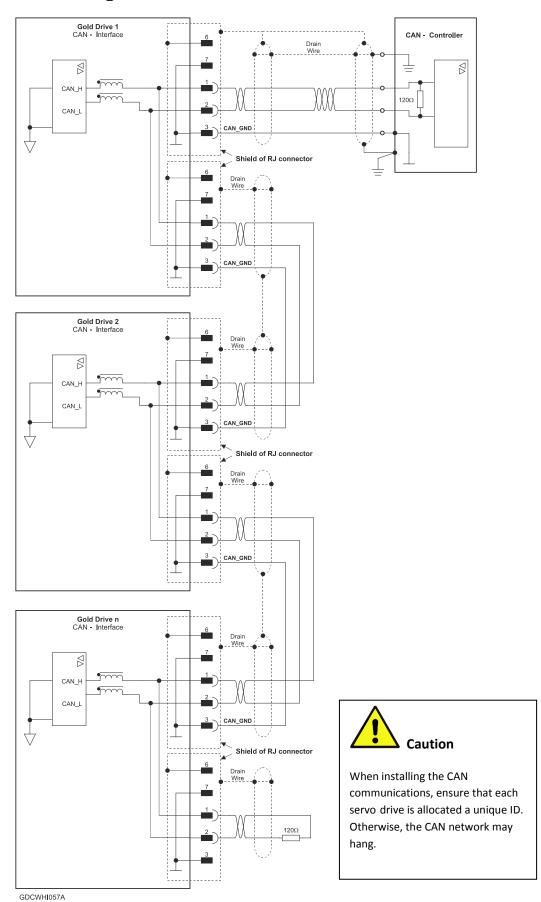
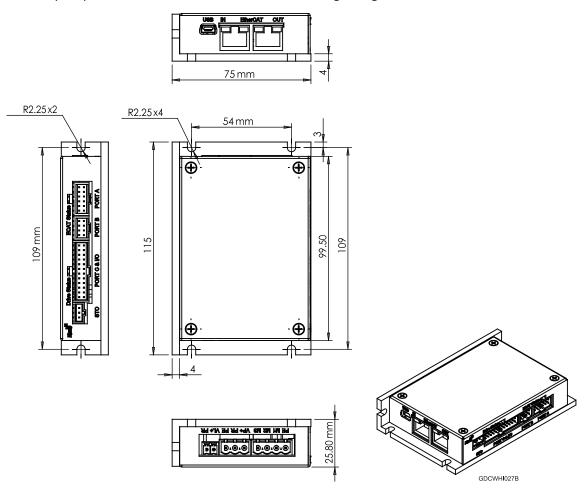


Figure 40: Gold DC Whistle Connection Diagram – CAN

6.12. Powering Up

After the Gold DC Whistle is connected to its device, it is ready to be powered up.

Caution:


Before applying power, ensure that the DC supply is within the specified range and that the proper plus-minus connections are in order.

6.13. Initializing the System

After the Gold DC Whistle has been connected and mounted, the system must be set up and initialized. This is accomplished using the *EASII*, Elmo's Windows-based software application. Install the application and then perform setup and initialization according to the directions in the *EASII User Manual*.

Chapter 7: Dimensions

This chapter provides detailed technical information regarding the Gold DC Whistle.

Inspiring Motion Since 1988 For a list of Elmo's branches, and your local area office, refer to the Elmo site www.elmomc.com