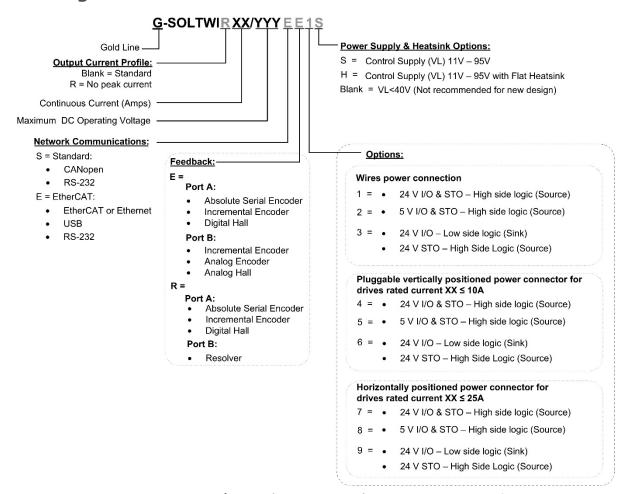
Gold Solo Twitter Digital Servo Drive Installation Guide

December 2018 (Ver. 4.001) www.elmomc.com

Notice

This guide is delivered subject to the following conditions and restrictions:

- This guide contains proprietary information belonging to Elmo Motion Control Ltd. Such information is supplied solely for the purpose of assisting users of the Gold Solo Twitter servo drive in its installation.
- The text and graphics included in this manual are for the purpose of illustration and reference only. The specifications on which they are based are subject to change without notice.
- Information in this document is subject to change without notice.


Document no. MAN-G-SOLTWI (Ver. 4.001)

Copyright © 2018

Elmo Motion Control Ltd.

All rights reserved.

Catalog Number

NOTE: The option G-SOLTWIXXX/YYYZZZ(Blank, VL<40V) is not recommended for new projects.

To order the accessories refer to the Chapter 11: Accessories.

Revision History

Version	Date
Ver. 1.000	Apr 2016
Ver. 1.001	Sep 2016
Ver. 1.002	Oct 2016
Ver. 2.000	Dec 2016
Ver. 2.001	Feb 2017
Ver. 2.002	Feb 2017
Ver. 2.003	Mar 2017
Ver. 2.004	Apr 2017
Ver. 2.005	Apr 2017
Ver. 2.006	Oct 2017
Ver. 2.007	May 2018
Ver. 2.008	Oct 2018
Ver. 3.000	May 2018
Ver. 4.000	Nov 2018
Ver. 4.001	Dec 2018

Chapter 1:		This Installation Guide	7
Chapte	r 2 : 9	Safety Information	7
2.1.	Warr	nings	8
2.2.	Caut	ions	8
2.3.	Warr	anty Information	8
Chapte	r 3 :	Product Description	9
Chapte	r 4: 1	Technical Information	10
4.1.	Phys	ical Specifications	10
4.2.	60V	and 100V Models Technical Data	13
4.3.	200V	Models Technical Data	13
4.4.	R Typ	pe Technical Data	14
4.5.	Cont	rol Supply Input Voltage (VL)	14
4.6.	Prod	uct Features	15
4.7.	Envir	onmental Conditions	16
Chapte	r 5 : 9	Standards	17
5.1.	CE D	eclaration	17
Chapte	r 6 : I	nstallation	18
6.1.	Unpa	acking the Drive Components	18
6.2.	Mou	nting the Optional Acessories Heat Sinks	19
6.3.	Mou	nting Gold Solo Twitter to an External Heatsink	21
6.4.	The 0	Gold Solo Twitter Connection Diagrams	22
	6.4.1	. EtherCAT Connection Diagram	22
	6.4.2	. CAN Connection Diagram	23
Chapte	r 7 : \	Niring	24
7.1.	Wirir	ng Legend	24
7.2.	Conr	nectors Types	26
7.3.	Mati	ng Connectors	26
7.4.	Logic	and Control Cabling and Wiring	27
	7.4.1	. J10 and J11 (Feedback ports, VL, RS232, USB, Analog Input)	27
	7.4.2	. J11 (Digital Inputs/Outputs, STO)	27
	7.4.3	. J17, J18 EtherCAT or CAN Communication	27
	7.4.4	. COMRET to PE Connection	27
75	\M/irir	ng the Female Connectors	28

Chapter 8	8: C C	onnections .		29
8.1.	Main,	Control, and	d Motor Power	29
	8.1.1.	Motor Po	ower	29
		8.1.1.1.	Motor Power Connections	30
	8.1.2.	Main Pov	ver Wires & Connector	32
		8.1.2.1.	Main Power	32
		8.1.2.2.	Wiring Technical Details	33
	8.1.3.	Control S	Supply (J10)	34
	8.1.4.	Control S	supply Connections for G-SOLTWIXXX/YYYZZZ(Blank)	36
		8.1.4.1.	Dual Power Supply	36
		8.1.4.2.	Single Power Supply (VP+ < 40VDC)	38
	8.1.5.	Control S	supply Connections for G-SOLTWIXXX/YYYZZZS or H	39
		8.1.5.1.	Dual Power Supply	39
		8.1.5.2.	Single Power Supply (VP+ < 95VDC)	41
8.2.	Drive S	Status Indica	ator	42
8.3.	J10 VL	and Feedba	nck Connector	43
	8.3.1.	Port A		46
		8.3.1.1.	Incremental Encoder	46
		8.3.1.2.	Absolute Serial Encoder	47
		8.3.1.3.	Hiperface	48
		8.3.1.4.	Hall Sensors	49
	8.3.2.	Port B		50
		8.3.2.1.	Incremental Encoder	50
		8.3.2.2.	Interpolated Analog Encoder	51
		8.3.2.3.	Resolver	52
	8.3.3.	Port C – I	Emulated Encoder Output (J10)	53
8.4.	J11 I/C	and Comm	nunication Connector	54
	8.4.1.	Digital In	puts	57
		8.4.1.1.	Source PLC Voltage Level Digital Input	57
		8.4.1.2.	Sink PLC Voltage Level Digital Input	59
		8.4.1.3.	Source 5V Logic Level Digital Input	61
	8.4.2.	Digital O	utputs	63
		8.4.2.1.	Source PLC Voltage Level Digital Output	63
		8.4.2.2.	Sink PLC Voltage Level Digital Output	65
		8.4.2.3.	Digital Outputs Source 5V Logic Mode	67
	8.4.3.	STO (Safe	Torque Off)	69
	8.4.4.	Analog Ir	nput	70

		8.4.5.	Standard	RS-232	71
		8.4.6.	USB 2.0 C	Communication (Only for EtherCAT version)	72
	8.5.	EtherCA	T Commur	nications Version	73
		8.5.1.	EtherCAT	IN/Ethernet Connector (J17)	73
		8.5.2.	EtherCAT	OUT Connector (J18)	74
		8.5.3.	EtherCAT	Schematic Connections	75
			8.5.3.1.	EtherCAT Communication	75
			8.5.3.2.	EtherCAT Status Indicator (D2)	76
			8.5.3.3.	EtherCAT Link Indicators (D3, D4)	77
	8.6.	CAN Cor	mmunicatio	ons Version	78
		8.6.1.	CAN IN Co	onnector (J17)	78
		8.6.2.	CAN OUT	Connector (J18)	79
		8.6.3.	CAN Sche	matic Connections	80
			8.6.3.1.	Interface	80
			8.6.3.2.	CAN Network Topology	81
C	hapter :	9: Pow	vering Up		82
	9.1.		•	em	
	9.2.				
		9.2.1.	•	ipation Data	
		9.2.2.	How to U	se the Chart	86
_					
C	•				
	10.1.			Heatsink	
	10.2.			itsink	
	10.3.			sink	
	10.4.	CAN wit	n Heatsink		96
С	hapter	11: Acc	essories		99
	11.1.	Accesso	ries Heat S	ink Dimensions	101

Chapter 1: This Installation Guide

This installation Guide details the technical data, pinouts, and power connectivity of the Gold Solo Twitter. For a comprehensive detailed description of the functions and connections of the drive, refer to the Gold Board Level Module Hardware Manual.

Chapter 2: Safety Information

In order to achieve the optimum, safe operation of the Gold Solo Twitter, it is imperative that you implement the safety procedures included in this installation guide. This information is provided to protect you and to keep your work area safe when operating the Gold Solo Twitter and accompanying equipment.

Please read this chapter carefully before you begin the installation process.

Before you start, ensure that all system components are connected to earth ground. Electrical safety is provided through a low-resistance earth connection.

Only qualified personnel may install, adjust, maintain and repair the servo drive. A qualified person has the knowledge and authorization to perform tasks such as transporting, assembling, installing, commissioning and operating motors.

The Gold Solo Twitter contains electrostatic-sensitive components that can be damaged if handled incorrectly. To prevent any electrostatic damage, avoid contact with highly insulating materials, such as plastic film and synthetic fabrics. Place the product on a conductive surface and ground yourself in order to discharge any possible static electricity build-up.

To avoid any potential hazards that may cause severe personal injury or damage to the product during operation, keep all covers and cabinet doors shut.

The following safety symbols are used in this and all Elmo Motion Control manuals:

Warning:

This information is needed to avoid a safety hazard, which might cause bodily injury or death as a result of incorrect operation.

Hot Surface Warning:

To alert against surfaces that may reach high temperatures. The heatsink and wires may reach high temperatures.

Caution:

This information is necessary to prevent bodily injury, damage to the product or to other equipment.

Important:

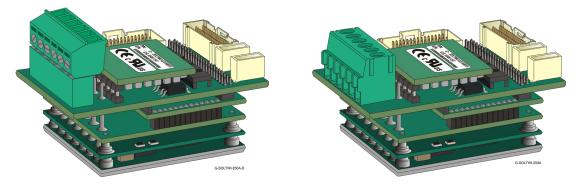
Identifies information that is critical for successful application and understanding of the product.

2.1. Warnings

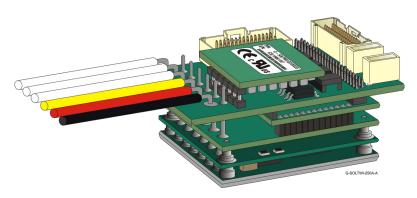
- To avoid electric arcing and hazards to personnel and electrical contacts, never connect/disconnect the servo drive while the power source is on.
- Power cables can carry a high voltage, even when the motor is not in motion.
 Disconnect the Gold Solo Twitter from all voltage sources before servicing.
- The high voltage products within the Gold Line range contain grounding conduits for electric current protection. Any disruption to these conduits may cause the instrument to become hot (live) and dangerous.
- After shutting off the power and removing the power source from your equipment, wait at least 1 minute before touching or disconnecting parts of the equipment that are normally loaded with electrical charges (such as capacitors or contacts). Measuring the electrical contact points with a meter, before touching the equipment, is recommended.

2.2. Cautions

- The maximum DC power supply connected to the instrument must comply with the parameters outlined in this guide.
- When connecting the Gold Solo Twitter to an approved control supply, connect it through a line that is separated from hazardous live voltages using reinforced or double insulation in accordance with approved safety standards.
- Before switching on the Gold Solo Twitter, verify that all safety precautions have been observed and that the installation procedures in this manual have been followed.
- Make sure that the Safe Torque Off is operational


2.3. Warranty Information

The products covered in this manual are warranted to be free of defects in material and workmanship and conform to the specifications stated either within this document or in the product catalog description. All Elmo drives are warranted for a period of 12 months from the date of shipment. No other warranties, expressed or implied — and including a warranty of merchantability and fitness for a particular purpose — extend beyond this warranty.


Chapter 3: Product Description

The Gold Solo Twitter is a "ready to use Gold Twitter", advanced high power density, highly intelligent servo drive operational within a few minutes, delivering up to **5.6 kW power** in an average 30.59 cm³ (1.87 in³) compact package (refer to the table in section 4.1 Physical Specifications for details). A cable kit and optional heat sinks are available for easy and fast operation of the Gold Solo Twitter.

The Gold Solo Twitter which is provided in the optional forms (Figure 1),

Vertical (≤ 10A) or Horizontal (≤ 25A) Power Connector for Output Current

Wired Power Connection for >25A Output Current

Figure 1: Gold Solo Twitter with Power Connectors Options

provides top performance, advanced networking and built-in certified safety, as well as a fully featured motion controller and local intelligence. Power to the Gold Solo Twitter is provided by a DC power source which is isolated from the Mains. The Gold Solo Twitter can operate with single or dual power supplies. If separation between the main DC power source and a control supply is required, then a control supply (also isolated from the Mains) is required.

The drive can operate as a stand-alone device or as part of a multi-axis system in a distributed configuration on a real-time network.

The Gold Solo Twitter drive is easily set up and tuned using the Elmo Application Studio (EASII) software tools. As part of the Gold product line, it is fully programmable with the Elmo motion control languages. For more information about software tools refer to the Elmo Application Studio (EASII) User Guide.

Optionally, where necessary, Elmo offers two external heat sinks (Catalog number: G-TWIHSFINSO1, and G-TWIHSFLATO1) which should be ordered separately. Refer to the section 6.2 Mounting the Optional Acessories Heat Sinks for details of installing the heat sinks.

Chapter 4: Technical Information

It should be noted that for all models, the Max Output current is guaranteed for $T_{\text{Heat-Sink}}$ <85°C

4.1. Physical Specifications

	Feature	Weights (g (oz))	Dimensions (mm (in))
EtherCAT			
	Power wire connections (No heatsink)	60.5 (2.13)	47.2 x 30 x 22.2 mm (1.86" x 1.18" x 0.87")
SIGN NAME.	Phoenix horizontal power connector (No heatsink)	36.5 (1.29)	48.1 x 30 x 25.0 mm (1.89" x 1.18" x 0.98")
O COLON ASIA	Phoenix pluggable vertical power connector (No heatsink)	39.0 (1.38)	48.3 x 30 x 34.7 mm (1.90" x 1.18" x 1.37")
	Power wire connections with heatsink	270.5 (9.54)	47.6 x 41.3 x 26.2 mm (1.87" x 1.63" x 1.03")

	Feature	Weights (g (oz))	Dimensions (mm (in))
CAST II MA	Phoenix horizontal power connector with heatsink	246.5 (8.69)	48.5 x 41.3 x 29.0 mm (1.91" x 1.63" x 1.14")
LES YELDON	Phoenix pluggable vertical power connector with heatsink	249.0 (8.78)	48.7 x 41.3 x 38.7 mm (1.92" x 1.63" x 1.52")
CAN			
- CANADAMA	Power wire connections (No heatsink)	56.0 (1.97)	47.2 x 30 x 19.3 mm (1.86" x 1.18" x 0.76")
SAN MAIA	Phoenix horizontal power connector (No heatsink)	32.5 (1.14)	48.1 x 30 x 22.1 mm (1.89" x 1.18" x 0.87")
6 DZ N 22A	Phoenix pluggable vertical power connector (No heatsink)	35.0 (1.23)	48.3 x 30 x 31.8 mm (1.9" x 1.18" x 1.25")

	Feature	Weights (g (oz))	Dimensions (mm (in))
C A D S S S S S S S S S S S S S S S S S S	Power wire connections with heatsink	266.0 (9.38)	47.6 x 41.3 x 23.3 mm (1.87" x 1.63" x 0.92")
VIZINGOA.	Phoenix horizontal power connector with heatsink	242.5 (8.55)	48.5 x 41.3 x 26.1 mm (1.91" x 1.63" x 1.03")
VICTOR AND A	Phoenix pluggable vertical power connector with heatsink	245.0 (8.64)	48.7 x 41.3 x 35.8 mm (1.92" x 1.63" x 1.41")
	Mounting method		Panel mount

4.2. 60V and 100V Models Technical Data

Feature	Units	30/60	1/100	3/100	6/100	10/100	15/100	25/100
Minimum supply voltage	VDC	8	8 10					
Nominal supply voltage	VDC	48				85		
Maximum supply voltage	VDC	55				95		
Maximum continuous power output	W	1370	80	235	470	800	1125	2000
Efficiency at rated power (at nominal conditions)	%	> 99						
Maximum output voltage				Up to 9	96% of DC	bus voltage	9	
Ic, Amplitude sinusoidal/DC continuous current	А	30	1	3	6	10	15	25
Sinusoidal continuous RMS current limit (Ic)	А	21	0.7	2.1	4.2	7.1	10	17.7
Peak current limit	Α				2 x lo	:		

Table 1: 60V and 100V Models Technical Data

4.3. 200V Models Technical Data

Feature	Units	3/200	6/200	10/200	
Minimum supply voltage	VDC		20		
Nominal supply voltage	VDC		170		
Maximum supply voltage	VDC		195		
Maximum continuous power output	W	485	975	1650	
Efficiency at rated power (at nominal conditions)	%	> 99			
Maximum output voltage		Up to 96	% of DC bu	s voltage	
Ic, Amplitude sinusoidal/DC continuous current	А	3	6	10	
Sinusoidal continuous RMS current limit (Ic)	А	2.1	4.2	7.1	
Peak current limit	Α		2 x lc		

Table 2: 200V Models Technical Data

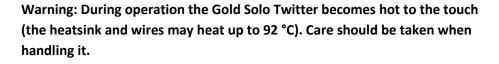
4.4. R Type Technical Data

Feature	Units	R50/60	R80/80	R50/100	R70/100	R45/150	R15/200
Minimum supply voltage	VDC	8	10	10	10	12	20
Nominal supply voltage	VDC	48	65	85	85	115	170
Maximum supply voltage	VDC	55	75	95	95	135	195
Maximum continuous Electrical power output	kW	2.3	5	4.0	5.6	5	2.5
Efficiency at rated power (at nominal conditions)	%	> 99					
Maximum output voltage			1	Up to 96% of	DC bus volta	ge	
Amplitude sinusoidal/DC continuous current	А	50	80	50	70	45	15
Sinusoidal continuous RMS current limit (Ic)	А	35.3	56.5	35.3	49.5	32	10.6

Table 3: R Type Models Technical Data

4.5. Control Supply Input Voltage (VL)

Feature	Unit	Details
Standard CAN		
Input range for G-SOLTWIXXX/YYYSZZ(Blank)	V	12V – 40V
Input range for G-SOLTWIXXX/YYYSZZS or H	V	11V – 95V
Power consumption (including 5 V/200 mA for encoder)	W	<2.5W
ETHERCAT		
Input range for G-SOLTWIXXX/YYYEZZ(Blank)	V	14V – 40V
Input range for G-SOLTWIXXX/YYYEZZS or H	V	11V – 95V
Power consumption (including 5 V/200 mA for encoder)	W	<4W


4.6. Product Features

Main Feature	Details	Presence / No.
STO	+5V Logic, Opto isolated from the Control section, <i>or</i>	V
	PLC Source, Opto isolated from the Control section	V
Digital Input	+5V Logic, Opto isolated from the Control section <i>or</i>	6
	PLC Source, Opto isolated from the Control section <i>or</i>	6
	PLC Sink Opto isolated from the Control section	6
Digital Output	+5V Logic, Opto isolated from the Control section <i>or</i>	4
	PLC Source, Opto isolated from the Control section <i>or</i>	4
	PLC Sink, Opto isolated from the Control section	4
Analog Input	Differential ±10V or Single Ended	1
Feedback	Standard Port A, B, & C	٧
Communication	USB (only for EtherCAT version)	٧
Option	EtherCAT or	٧
	CAN	٧
	Standard RS232	٧

4.7. Environmental Conditions

You can guarantee the safe operation of the Gold Solo Twitter by ensuring that it is installed in an appropriate environment.

Caution:

The Gold Solo Twitter dissipates its heat by convection or by conduction. The maximum ambient operating temperature of 50 $^{\circ}$ C (122 $^{\circ}$ F) must not be exceeded.

Feature	Details
Operating ambient temperature in compliance with STO standards	0 °C to 40 °C (32 °F to 104 °F)
Operating ambient temperature according to IEC60068-2-2	0 °C to 50 °C (32 °F to 122 °F) in compliance with UL standards
Storage temperature	-20 °C to +85 °C (-4 °F to +185 °F)
Maximum non-condensing humidity according to IEC60068-2-78	95%
Maximum Operating Altitude	2,000 m (6562 feet)
	It should be noted that servo drives capable of higher operating altitudes are available on request.
Mechanical Shock according to IEC60068-2-27	15g / 11ms Half Sine
Vibration	5 Hz ≤ f ≤ 10 Hz: ±10mm
according to IEC60068-2-6	10 Hz ≤ f ≤ 57 Hz: 4G
	57 Hz ≤ f ≤ 500 Hz:5G

Chapter 5: Standards

Refer to the complete Standards list detailed and available on the internet at:

https://www.elmomc.com/capabilities/standards-compliance/gold-family/

5.1. CE Declaration

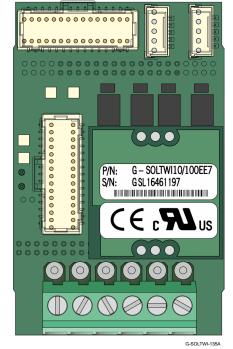
Refer to the complete EC Declaration of Conformity available on the internet at:

https://www.elmomc.com/wp-content/uploads/dlm_uploads/2018/05/Gold-Line-CE-Declaration-of-Conformity.pdf.

Chapter 6: Installation

The Gold Solo Twitter must be installed in a suitable environment and properly connected to its voltage supplies and the motor.

6.1. Unpacking the Drive Components

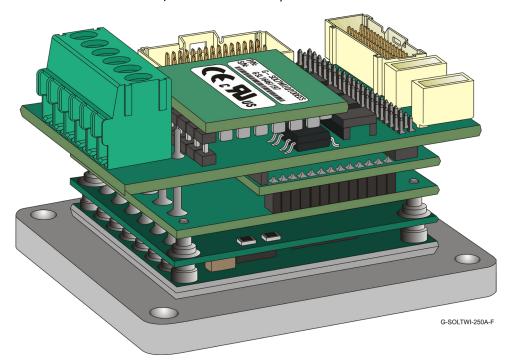

Before you begin working with the Gold Solo Twitter, verify that you have all of its components, as follows:

- The Gold Solo Twitter servo drive
- The Elmo Application Studio (EASII) software and software manual

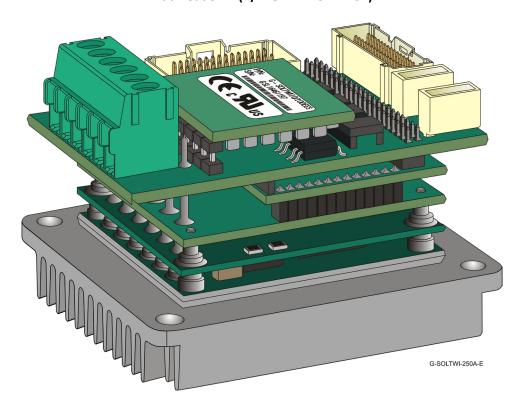
The Gold Solo Twitter is shipped in a cardboard box with Styrofoam protection.

To unpack the Gold Solo Twitter:

- 1. Carefully remove the servo drive from the box and the Styrofoam.
- 2. Check the drive to ensure that there is no visible damage to the instrument. If any damage has occurred, report it immediately to the carrier that delivered your drive.
- 3. To ensure that the Gold Solo Twitter you have unpacked is the appropriate type for your requirements, locate the part number sticker on the top of the Gold Solo Twitter. It looks like this:



4. Verify that the Gold Solo Twitter type is the one that you ordered, and ensure that the voltage meets your specific requirements.


The part number at the top provides the type designation. Refer to the appropriate part number in the section Catalog Number at the beginning of the installation guide.

6.2. Mounting the Optional Acessories Heat Sinks

There are two optional heat sinks, available as accessory kits (The model G-SOLTWIXXX/YYYZZZH is integrated with the Flat Heatsink P/N G-TWIHSFLAT01):

Flat Heat Sink (P/N G-TWIHSFLAT01)

Fins Heat Sink (P/N G-TWIHSFINS01)

The optional heat sink must be screwed to the lower surface of the Gold Solo Twitter.

To mount the accessory heatsink (Not availble for the option G-SOLTWIXXX/YYYZZZH):

- 1. Mount the heat sink under the base of the Gold Solo Twitter.
- 2. Place the Thermal foil (enclosed in the heat sink accessories kit) between the lower surface of the servo drive, and the upper surface of the heatsink.
- 3. Use four M2 screws (enclosed in the heat sink accessories kit) to secure the heatsink under the servo drive.
- Tighten the screws to the relevent torque force applicable to an M2 stainless steel A2 4. screw.

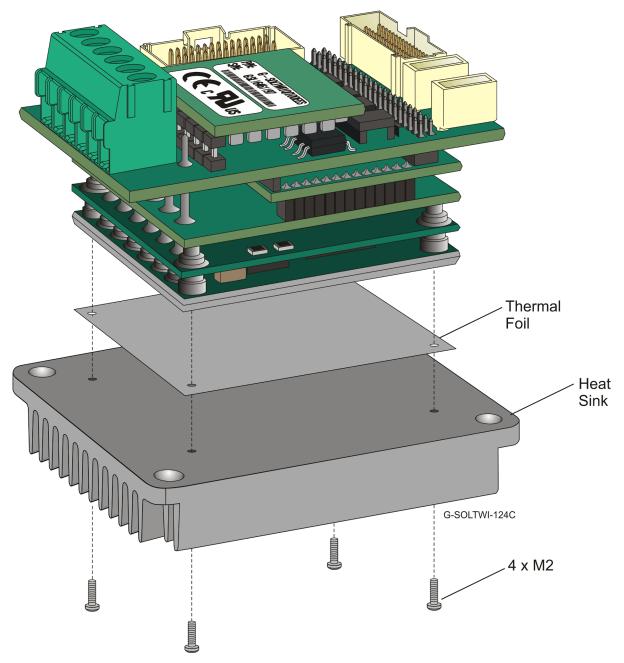


Figure 2: Mount the Heat Sink and Thermal Foil to the Gold Solo Twitter

6.3. Mounting Gold Solo Twitter to an External Heatsink

This option is only avaliable for G-SOLTWIXXX/YYYZZZH.

The selected heat sink must be screwed to the lower surface of the Gold Solo Twitter.

To mount the Gold Solo Twitter to an external heat sink:

- Mount the heat sink under the base of the Gold Solo Twitter. 1.
- 2. Place the Thermal foil (PN IMT-GTWIALHFLAT purchased from Elmo) between the lower surface of the servo drive, and the upper surface of the heatsink.
- 3. Use four M2.5 head cup Allen screws to secure the heat sink under the servo drive.
- 4. Tighten the screws to the relevent torque force applicable to an M2.5 stainless steel A2 screw.

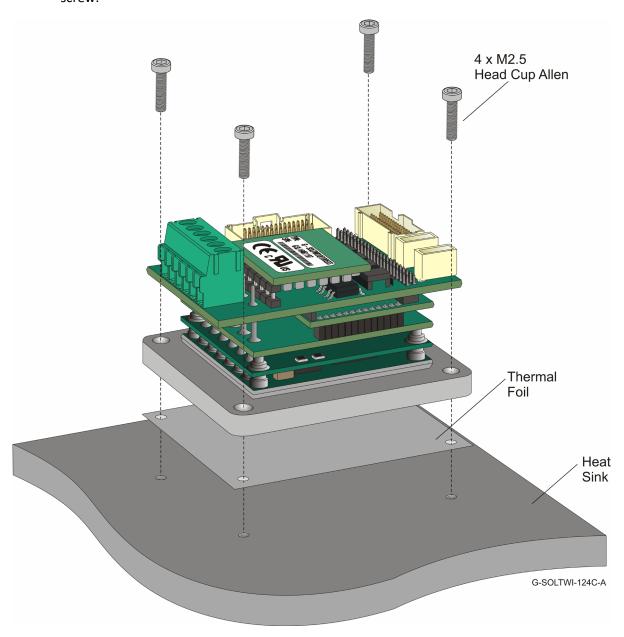


Figure 3: Mounting the Heat Sink and Thermal Foil to the Gold Solo Twitter

6.4. The Gold Solo Twitter Connection Diagrams

6.4.1. EtherCAT Connection Diagram

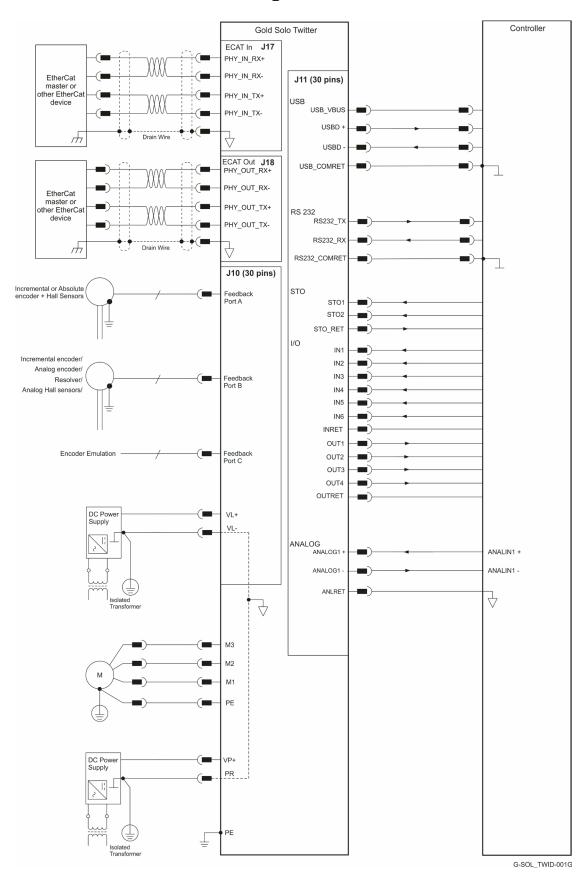
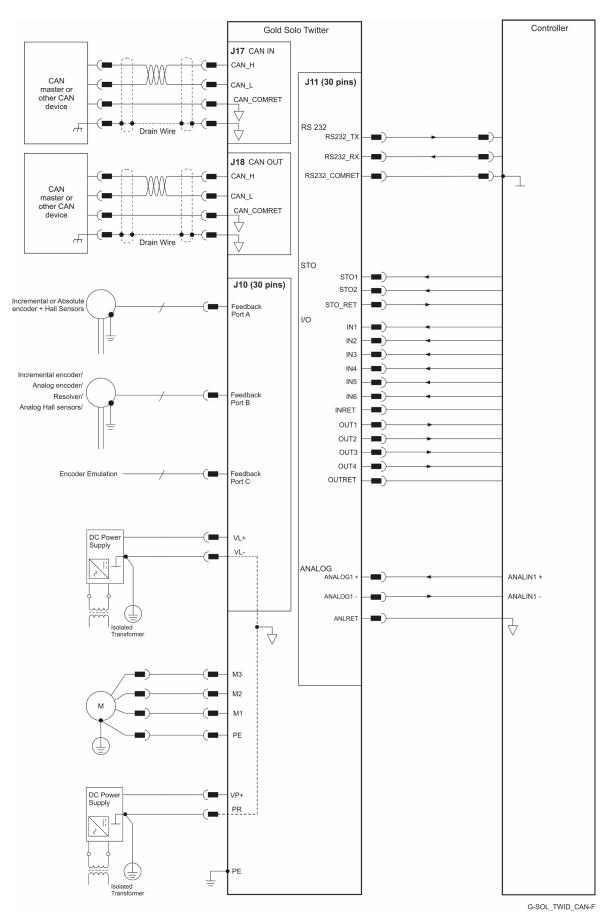



Figure 4: The Gold Solo Twitter EtherCAT Connection Diagram

6.4.2. CAN Connection Diagram

MAN-G-SOLTWI (Ver. 4.001)

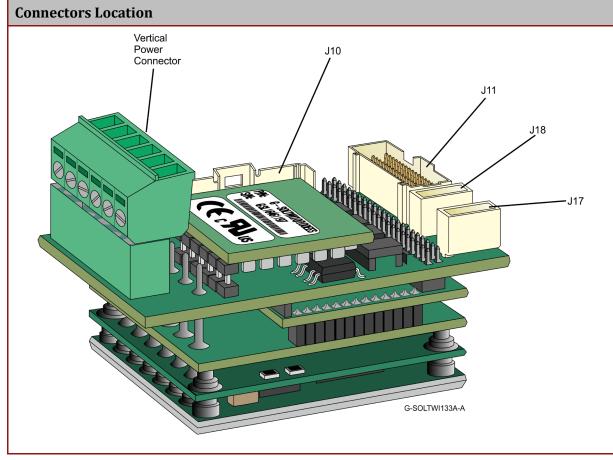
Figure 5: The Gold Solo Twitter CAN Connection Diagram

Chapter 7: Wiring

7.1. Wiring Legend

The following table legend describes the wiring symbols detailed in all installation guides.

Wiring Symbol	Description
GGEN_101D-A	Earth connection (PE)
GGEN_101D-B	Earth Connection
GGEN_101D-C	Common at the Controller
GGEN_101D-D Drain Wire	Shielded cable with drain wire. The drain wire is a non-insulated wire that is in direct contact with the braid (shielding). Shielded cable with drain wire significantly simplifies the wiring and earthing.
GGEN_101D-E	Shielded cable braid only, without drain wire.
GGEN_101D-F	Twisted-pair wires


7.2. Connectors Types

The Gold Solo Twitter has five connectors:

Connector	Connector Type	
Power	Wires, Horizontal or Pluggable Vertical Pheonix connector	
J10, J11	J10 - VL & Feedback Ports Connector (2 rows x 15 Pins)	
	J11 - IO and Communication Connector (2 rows x 15 Pins)	
J17, 18	J17 - CAN/EtherCAT IN Communication	
	J18 - CAN/EtherCAT OUT Communication	

7.3. Mating Connectors

Connector	Mating Connector Type	Mating Crimping Pins	
Power(Vertical model)	PHEONIX 3.5 mm pitch terminal 6-pin plug straight 1840405	N/A	
J10, J11 VL & Feedback Ports IO and Communication	MOLEX 1.00mm "Pico-Clasp" 501189-3010	MOLEX 1.00mm crimp terminal 501193-3000	
J17, 18 IN/OUT CAN/EtherCAT Communication	MOLEX 1.00mm "Pico-Clasp" 501330-0500	MOLEX 1.00mm crimp terminal 501334-0100	

Table 4: Connector Types

7.4. Logic and Control Cabling and Wiring

7.4.1. J10 and J11 (Feedback ports, VL, RS232, USB, Analog Input)

For short distances between the drive and control, 0.5 to 1.0 m wires can be used and shielding is not required. For longer distances than 1.0 m and/or high EMI environment, shielded and twisted wires should be used. Drain wires should be connected to Elmo COMRET.

7.4.2. J11 (Digital Inputs/Outputs, STO)

Wires can be always used, no need for twisting, no need for shielding.

7.4.3. J17, J18 EtherCAT or CAN Communication

Always use CAT5e cables (see Elmo's Gold Solo Twitter Cable Kit (MAN-G-SOLTWI-CBLKIT)).

7.4.4. COMRET to PE Connection

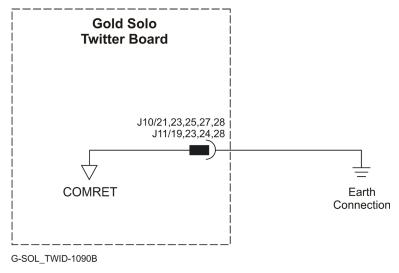


Figure 6: COMRET Connection to the PE

At least one COMRET pin (Figure 6) must be connected to the Protective Earth (PE).

Earthing the COMRET by connecting the Earth (PE) to the drive COMRET is mandatory to insure reliable operation, high noise immunity and rejection of voltage common mode interferences.

7.5. Wiring the Female Connectors

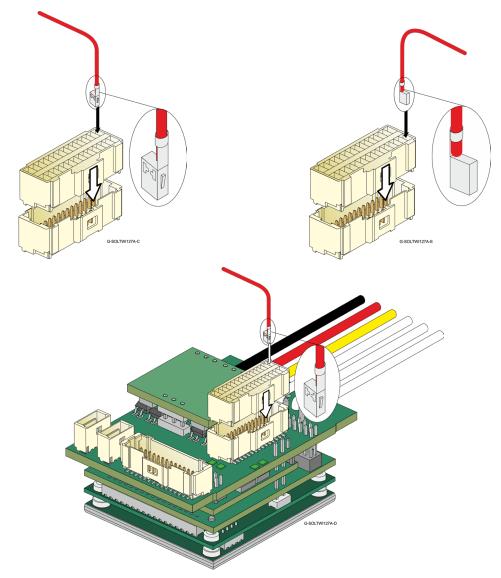


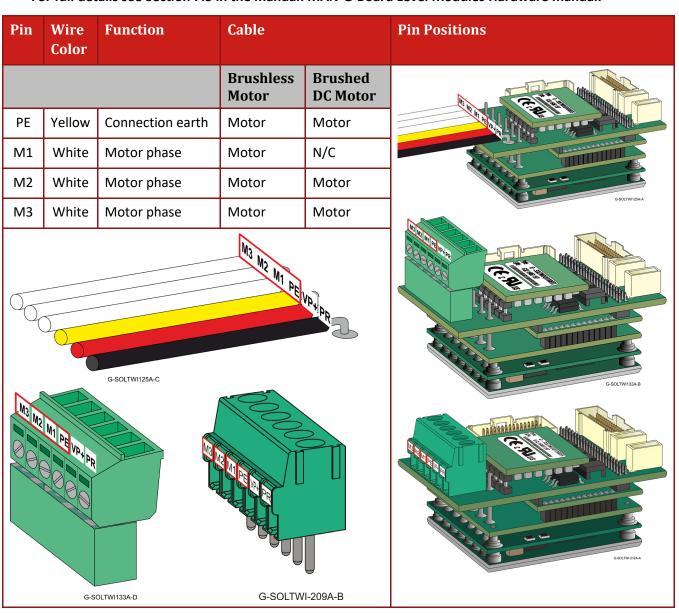
Figure 7: Inserting a wire/pin to the Female Connector

To insert a wire/pin to the female connectors of J10, J11, J17, and J18 do the following:

- 1. Select the relevantly colored wire to insert to a specific rectangular compartment on the female connector.
- 2. Use the appropriate Molex crimping plier (Molex P/N 63819-1500) to fasten a pin connector to the end of the wire.
- 3. Place the connector on a flat surface, in the orientation as shown in Figure 7. Notice that the rectangular slot has a niche at the bottom of the slot.
- 4. Insert the wire connector to the slot as shown in Figure 7. Make sure that the connector protrusion is inserted to the bottom of the rectangular slot. When inserting the wire connector to a slot in the second row, make sure to rotate the connector in the opposite orientation.
- 5. Repeat the same procedure for any other wire connections.

Chapter 8: Connections

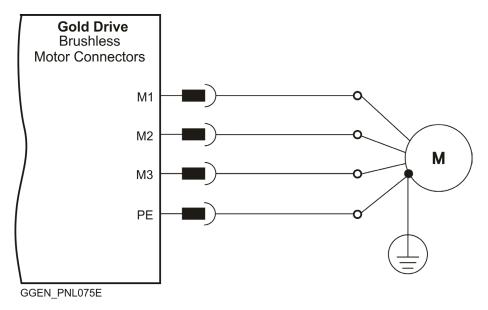
8.1. Main, Control, and Motor Power

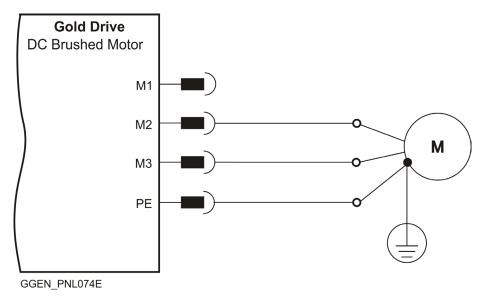

This section describes the Main and Control supplies, and Motor Power connections.

There are three optional Motor and Main Power interfaces:

- The current carrying capacity of the Solo board wires is up to 80A (57A RMS)
- Pheonix horizontal connector on models have an output current of 25A (17.7A RMS) or less
- Pheonix pluggable vertical connector on models have an output current of 10A (7.1A RMS) or less

8.1.1. Motor Power


For full details see Section 7.3 in the manual: MAN-G-Board Level Modules Hardware manual.


Table 5: Motor Wires or Connector

MAN-G-SOLTWI (Ver. 4.001)

Figure 8: Brushless Motor Power Connection Diagram

Figure 9: Brushed Motor Power Connection Diagram

8.1.1.1. **Motor Power Connections**

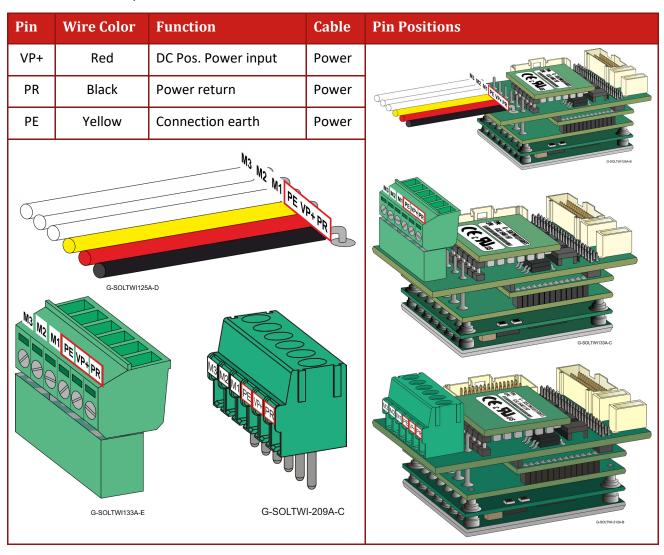
- 1. Ensure that the motor chassis is properly earthed.
- 2. Connect the appropriate wire from the Motor Power cables to the M1, M2, M3, and PE terminals on the Gold Solo Twitter.

The phase connection is arbitrary as Elmo Application Studio (EAS II) will establish the proper commutation automatically during setup. When tuning a number of drives, you can copy the setup file to the other drives and thus avoid tuning each drive separately. In this case the motor-phase order must be the same as on the first drive.

- 3. For high EMI environment, it is highly recommended to use a 4-wire shielded (not twisted) cable for the motor connection. The gauge is determined by the actual RMS current consumption of the motor.
 - Connect the cable shield to the closest ground connection at the motor end. For better EMI performance, the shield should be connected to Earth Connection (heat sink mounting holes).
- 4. Connect the motor power wires as shown in Figure 10. The Yellow wire is the Grounding wire.

Make sure not to bundle the wires.

Figure 10: Connecting the Motor Power Wires



8.1.2. **Main Power Wires & Connector**

This section describes the Main Power and the Control supply connector.

8.1.2.1. **Main Power**

The isolated DC power source is not included with the Gold Solo Twitter.

Table 6: Connector or Wires for Main Power

Connect the DC power cable to the VP+ and PR terminals on the main power connector.

To connect the Gold Solo Twitter to the DC power source:

- 1. The source of the VDC power supply must be isolated from the Mains.
- 2. Verify that the rectified VDC is indeed within the range of the drive.

3. Connect the VP+ and PR wires to the terminals on the servo-drive as shown in Figure 11. It is highly recommended to twist the two DC main power cables at intervals of 10 cm.

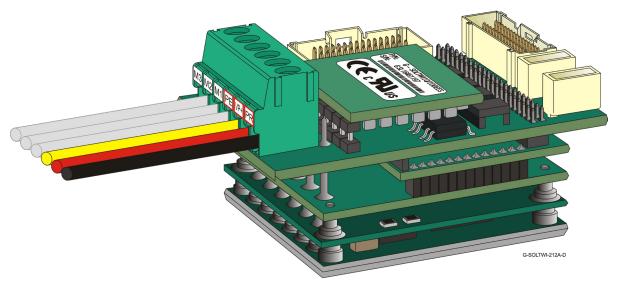


Figure 11: Connecting the Main Power Wires

- 4. Connect the PE to the closest earth connection near the power supply.
- 5. Connect the PR to the closest earth connection near the power supply.
- 6. Before applying power, first verify the polarity of the connection.

8.1.2.2. Wiring Technical Details

The following Wired Power Connections are rated to operate up to 200°C:

- For up to 30A consist of six 14-AWG colored high quality wires
- For 45A and higher consist of six 12-AWG colored high quality wires

The Gold Solo Twitter wire connection conforms to UL standards for operation up to 105° C (on the wires). Under extensive load conditions the wires temperature gradient is $\approx 50^{\circ}$ C above ambient.

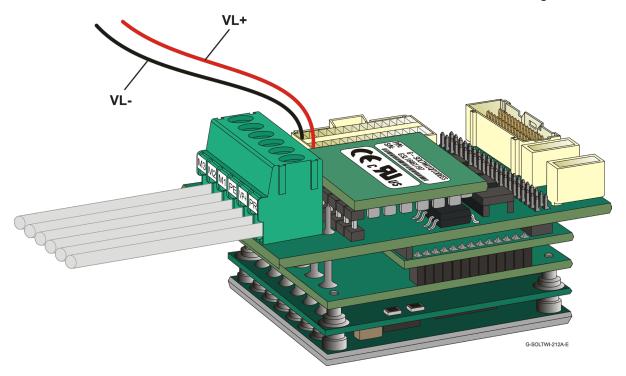
8.1.3. Control Supply (J10)

Connect the VL+ and VL- pins on the Gold Solo Twitter in the manner described in the table and drawing below.

Pir		Signal	Function	Pin Positions		
				I III I USILIUIIS		
3	30	VL+	Control Supply Input			
2	!9	VL-	Control Supply Return			
2.	 Standard CAN (G-SOLTWIXXX/YYYSZZ(Blank)) Input range: 12VDC – 40VDC Power consumption: <2.5W (including 5 V/200 mA for encoder) EtherCAT (G-SOLTWIXXX/YYYEZZ(Blank)) Input range: 14VDC – 40VDC Power consumption: <4W (including 5 V/200 mA for encoder) 		X/YYYSZZ(Blank)) L2VDC – 40VDC mption: <2.5W /200 mA for X/YYYEZZ(Blank)) L4VDC – 40VDC mption: <4W	VL+ VL+		
3.				G-SOLTWOMBS E 2		
4.	(G-S Inpu Pow (incl	ıt range: 1 ver consur	(X/YYYEZZS or H) 11VDC – 95VDC mption: <4W /200 mA for			

Table 7: Control Supply Pins

Connect the VL+ and VL- terminals to the power supply Control Connector.


To connect the VL+ and VL- to the control supply:

- 1. The source of the control supply must be isolated from the Mains.
- 2. Connect the return (common) of the control supply source to the closest earth connection near the control supply source.

MAN-G-SOLTWI (Ver. 4.001)

3. Connect the VL+ and VL- wires to the terminals on the servo-drive as shown in Figure 12.

Figure 12: Connecting the Control Supply Wires

For short distances between the drive and control, 0.5 to 1.0 m wires can be used and shielding is not required. For longer distances than 1.0 m and/or high EMI environment, shielded and twisted wires should be used. Drain wires should be connected to Elmo COMRET.

4. Before applying power, first verify the polarity of the connection.

Note: For VL 12VDC to 40VDC (G-SOLTWIXXX/YYYZZZ(Blank)) refer to section 8.1.4.

For VL 11VDC to 95VDC (G-SOLTWIXXX/YYYZZZS or H) refer to section 8.1.5.

8.1.4. Control Supply Connections for G-SOLTWIXXX/YYYZZZ(Blank)

Note:

This section is for VL 12VDC to 40VDC (G-SOLTWIXXX/YYYZZZ(Blank)).

For VL 11VDC to 95VDC (G-SOLTWIXXX/YYYZZZS or H) refer to section 8.1.5.

8.1.4.1. **Dual Power Supply**

Whenever the VP+ is >40VDC, a separate supply for the Logic is required. Both the Power and Logic supplies are required to be isolated-from-the-mains:

- A battery or main DC power source rectified from the Mains, according to specification
- A control supply for the logic (VL+, VL-)

The following figure describes an ordinary power supply for Servo drives with sufficient internal capacitance and shunt regulator to manage power flow in both directions to-and-from the motor.

The PR, COMRET, and VL- are connected internally in the Gold Solo Twitter.

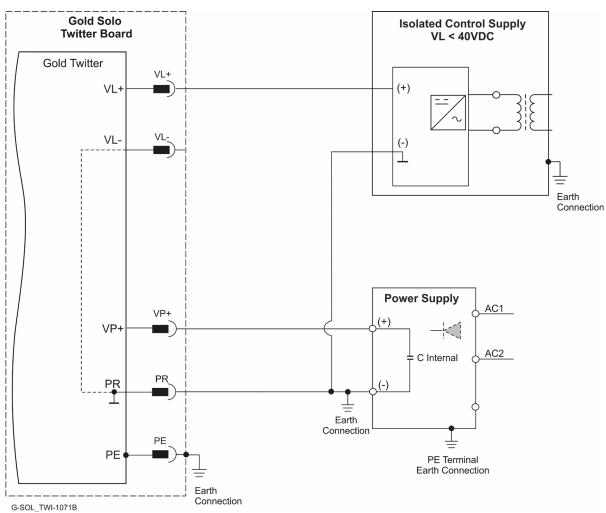


Figure 13: Separate VP and VL Power Supplies Connection Diagram -Highly Recommended

The (+) of the control power supply is connected to the VL+ terminal, while the (-) of the control power supply is connected directly to the (-) of the DC bus power supply. This connection avoids high current ground loops due to poor wiring (Figure 13).

Table of Contents

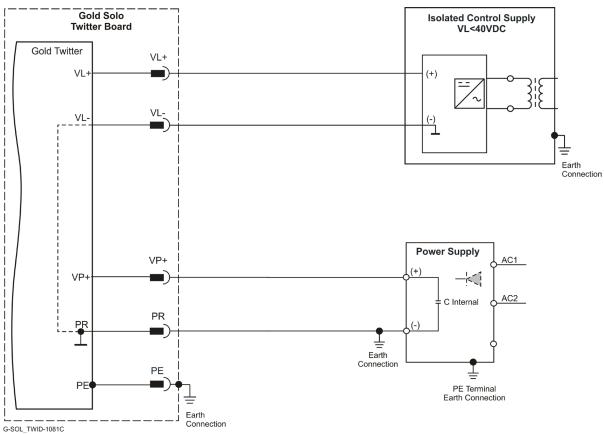


Figure 14: Separate VP and VL Power Supplies Connection Diagram - Alternative

The (-) of the control power supply is connected to the VL- of the Gold Solo Twitter (Figure 14).

8.1.4.2. Single Power Supply (VP+ < 40VDC)

Where a single power supply is used (VL+ connected to VP+), the absolute maximum VP+ and VL+ voltage must be < 40VDC, under all conditions, to prevent VL+ supply failure.

When regeneration or braking occurs, the DC bus may increase and may exceed the VL limit of over 40VDC, possibly causing the VL to fail. Under these conditions, you must install the Dual Power Supply described above in section 8.1.4.1.

For the EtherCAT (E option), the minimum VL is 14 VDC.

For the CAN version power rating of 12VDC to 40VDC, or 14VDC to 40VDC for the EtherCAT version, a single power supply can be used for the main and control power.

The following figure describes a single connection of main power and control

Figure 15: Single Power Supply (VP+ <40V) Connection Diagram

Note: This option is available for power supply up to 40VDC.

8.1.5. Control Supply Connections for G-SOLTWIXXX/YYYZZZS or H

Note:

This section is for VL 11VDC to 95VDC (G-SOLTWIXXX/YYYZZZS or H).

For VL 12VDC to 40VDC (G-SOLTWIXXX/YYYZZZ(Blank)) refer to section 8.1.4.

8.1.5.1. **Dual Power Supply**

Whenever the VP+ is >95VDC, a separate supply for the Logic is required. Both the Power and Logic supplies are required to be isolated-from-the-mains:

- A battery or main DC power source rectified from the Mains, according to specification
- A control supply for the logic (VL+, VL-)

The following figure describes an ordinary power supply for Servo drives with sufficient internal capacitance and shunt regulator to manage power flow in both directions to-and-from the motor.

The PR, COMRET, and VL- are connected internally in the Gold Solo Twitter.

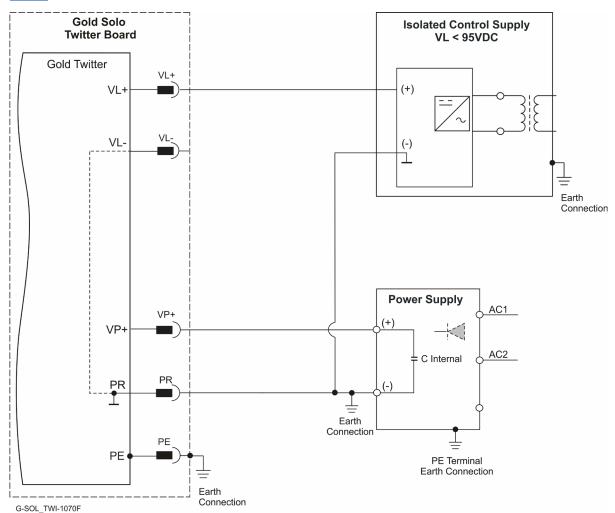


Figure 16: Separate VP and VL Power Supplies Connection Diagram -Highly Recommended

The (+) of the control power supply is connected to the VL+ terminal, while the (-) of the control power supply is connected directly to the (-) of the DC bus power supply. This connection avoids high current ground loops due to poor wiring (Figure 16).

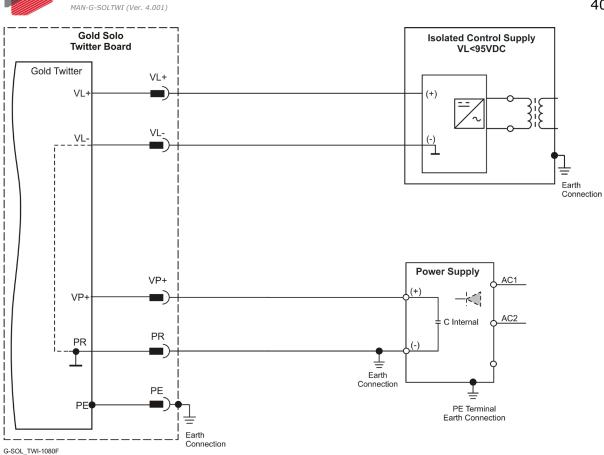


Figure 17: Separate VP and VL Power Supplies Connection Diagram - Alternative

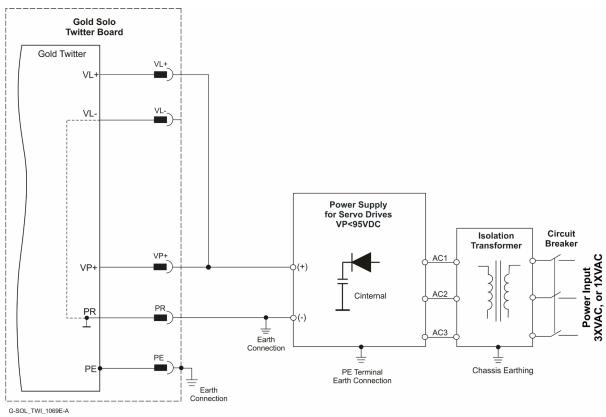
The (-) of the control power supply is connected to the VL- of the Gold Solo Twitter (Figure 17).

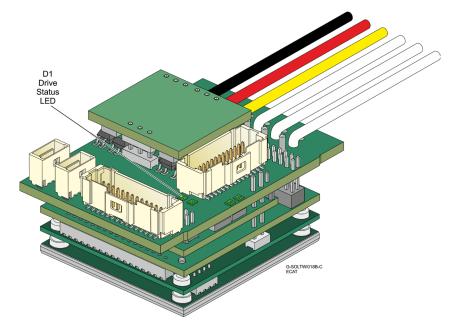
8.1.5.2. Single Power Supply (VP+ < 95VDC)

Where a single power supply is used (VL+ connected to VP+), the absolute maximum VP+ and VL+ voltage must be < 95VDC, under all conditions, to prevent VL+ supply failure.

A single power supply can be used for the main and control power in the range of 11VDC to 95VDC.

The following figure describes a single connection of main power and control.




Figure 18: Single Power Supply (VP+ <95V) Connection Diagram

Note: This option is available for power supply up to 95VDC.

Drive Status Indicator

Figure 19 shows the position of the D1 red/green dual LED, which is used for immediate indication of the Initiation and Working states. For details refer to Chapter 7 Drive Status Indicator, in the MAN-G-Panel Mounted Drives Hardware manual.

Drive Status Indicator - EtherCAT

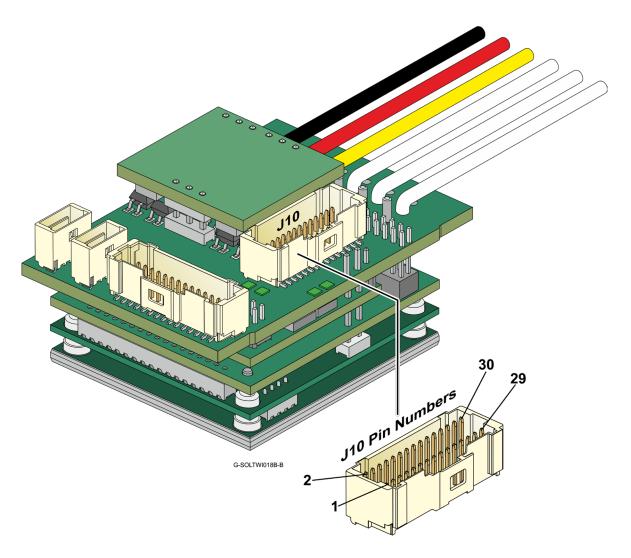


Figure 19: Drive Status Indicator - CAN

The red/green dual LED is used for immediate indication of the following states:

- Initiation state: In this state the LED indicates whether the drive is in the boot state (blinking red) or in the operational state (steady red).
- Working state: In this state the LED indicates whether the drive is in an amplifier failure state (red) or is ready to enable the motor (green).

8.3. J10 VL and Feedback Connector

J10 VL & Feedback Connector

Feedback A/B/C, Digital Halls – see Section 9.2 in the manual: MAN-G-Board Level Modules Hardware Manual.

The following table describes the J10 VL and Feedback connections to the 2 x 15 pins female connector.

Pin J10	Signal	Function
1	PortA_ENC_A+ / ABS_CLK+	Channel A+ / Abs encoder clock +
2	PortB_ENC_A-	Port B Channel A-
3	PortA_ENC_A- / ABS_CLK-	Channel A- / Abs encoder clock -
4	PortB_ENC_A+	Port B Channel A+
5	PortA_ENC_B+ / ABS_DATA+	Channel B+ / Abs encoder data +
6	PortB_ENC_B-	Port B Channel B-

Pin J10	Signal	Function
7	PortA_ENC_B- / ABS_DATA-	Channel B- / Abs encoder data -
8	PortB_ENC_B+	Port B Channel B+
9	PortA_ENC_INDEX+	Index+
10	PortB_ENC_INDEX-	Port B Index-
11	PortA_ENC_INDEX-	Index-
12	PortB_ENC_INDEX+	Port B Index+
13	НА	Hall sensor A
14	PortC_ENCO_A-	Buffered Channel A- output / Pulse- / PWM-
15	НВ	Hall sensor B
16	PortC_ENCO_A+	Buffered Channel A+ output/Pulse+/PWM+
17	НС	Hall sensor C
18	PortC_ENCO_B-	Buffered Channel B- output / Dir-
19	+5V	Encoder +5V supply with a total allowable maximum consumption of 200mA using Pins 19 or 26.
20	PortC_ENCO_B+	Buffered Channel B+ output / Dir+
21	COMRET	Common return
22	PortC_ENCO_Index-	Buffered Channel INDEX- output
23	COMRET	Common return
24	PortC_ENCO_Index+	Buffered Channel INDEX+ output
25	COMRET	Common return
26	+5V	Encoder +5V supply with a total allowable maximum consumption of 200mA using Pins 19 or 26.
27	COMRET	Common return
28	COMRET	Common return
29	VL-	Control 24V supply return
30	VL+	Control 24V supply

Table 8: Connector J10 - VL & Feedback

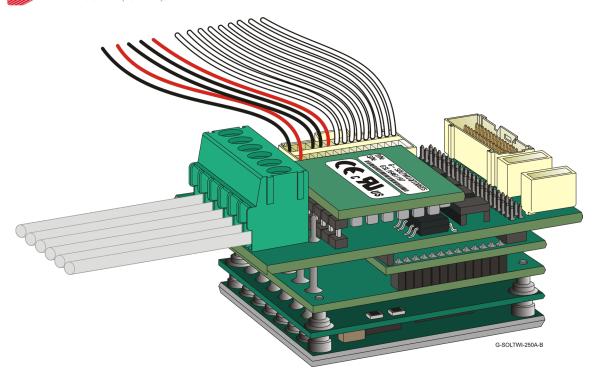


Figure 20: Connecting the Feedback Wires

8.3.1. Port A

Refer to section 10.3 in the MAN-G-Board Level Modules Hardware Manual for further details of the Port A connections.

8.3.1.1. Incremental Encoder

MAN-G-SOLTWI (Ver. 4.001)

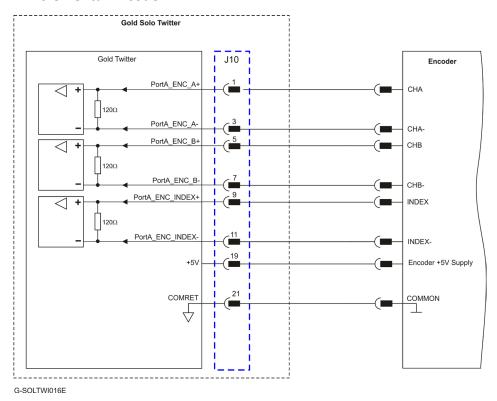


Figure 21: Port A Incremental Encoder Input – Recommended Connection Diagram

8.3.1.2. Absolute Serial Encoder

MAN-G-SOLTWI (Ver. 4.001)

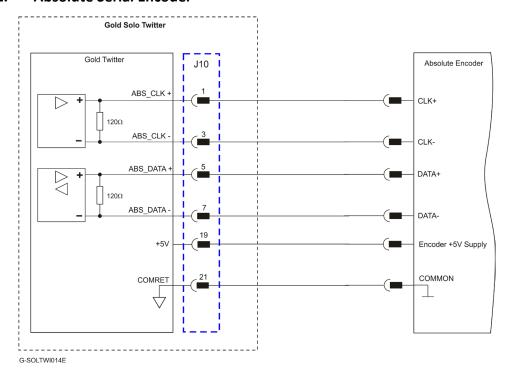


Figure 22: Absolute Serial Encoder – Recommended Connection Diagram for Sensors Supporting Data/Clock (e.g., Biss / SSI / EnDAT, etc.)

For short distances between the drive and control, 0.5 to 1.0 m wires can be used and shielding is not required. For longer distances than 1.0 m and/or high EMI environment, shielded and twisted wires should be used. Drain wires should be connected to Elmo COMRET.

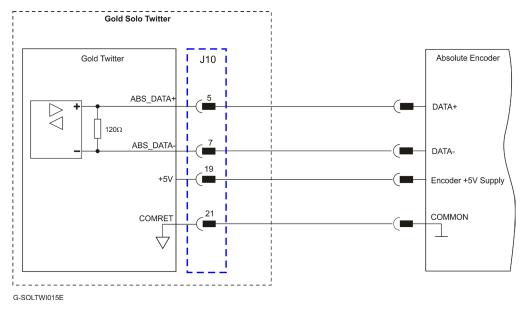


Figure 23: Absolute Serial Encoder – Recommended Connection Diagram for Sensors Supporting Data Line Only (NRZ types, e.g., Panasonic / Mitutoyo / etc.)

8.3.1.3. **Hiperface**

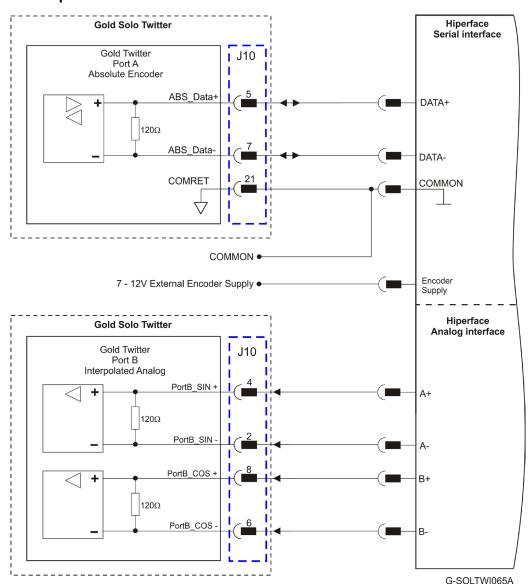
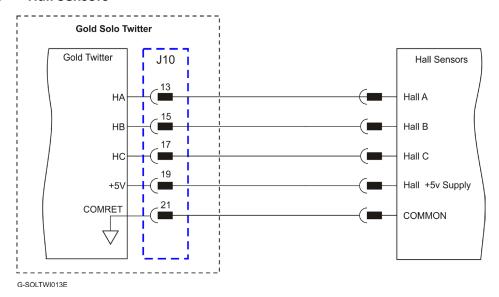



Figure 24: Absolute Serial Encoder – Recommended Connection Diagram for Stegmann Hiperface

Note: When the Hiperface protocol is used, the RS-232 connection is not available

8.3.1.4. Hall Sensors

Figure 25: Hall Sensors Connection Diagram

8.3.2. Port B

Refer to section 10.4 in the MAN-G-Board Level Modules Hardware Manual for further details of the Port B connections.

8.3.2.1. Incremental Encoder

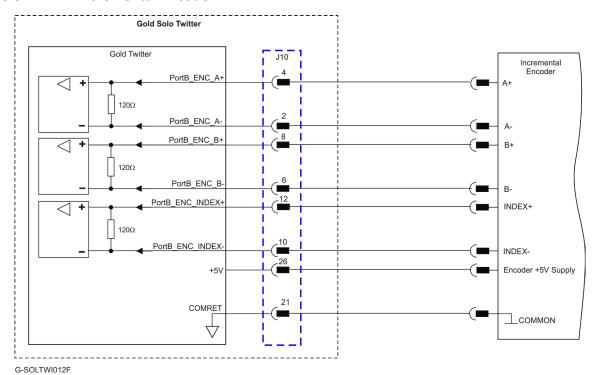


Figure 26: Port B Incremental Encoder Input - Recommended Connection Diagram

8.3.2.2. **Interpolated Analog Encoder**

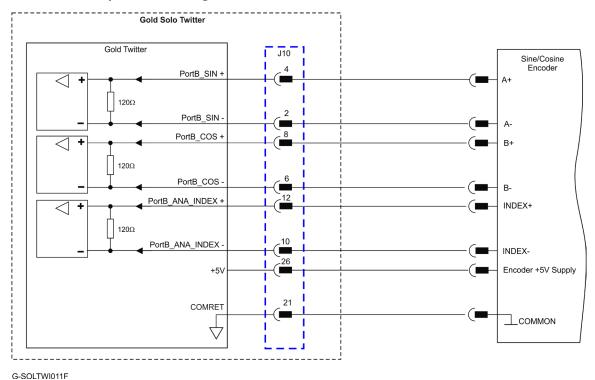


Figure 27: Port B - Interpolated Analog Encoder Connection Diagram

8.3.2.3. Resolver

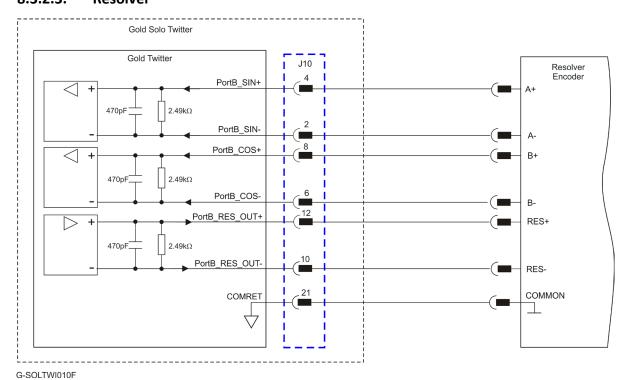


Figure 28: Port B – Resolver Connection Diagram

Port C - Emulated Encoder Output (J10) 8.3.3.

See Section 10.5 in the manual: MAN-G-Board Level Modules Hardware Manual for further details of Port C.

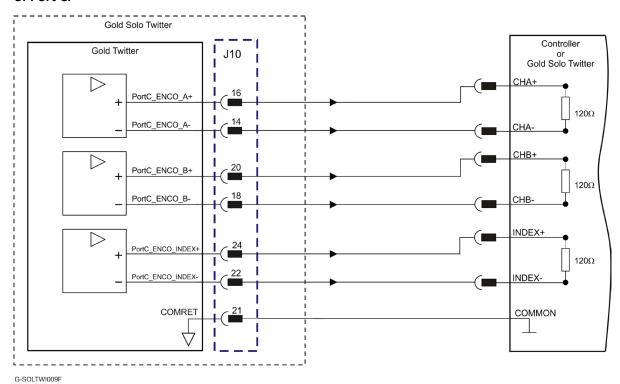
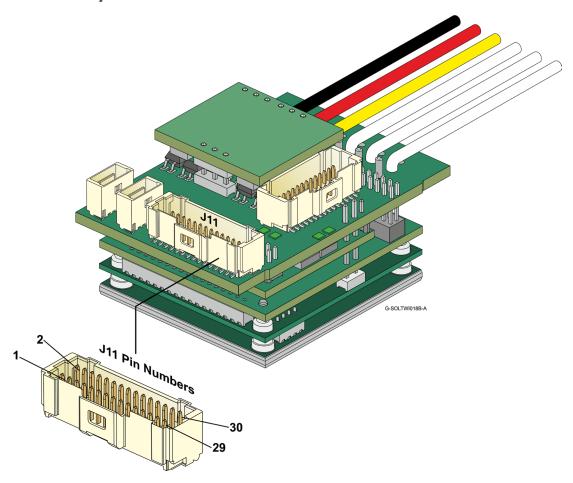



Figure 29: Emulated Encoder Differential Output – Recommended Connection Diagram

8.4. J11 I/O and Communication Connector

J11 I/O and Communication Connector

Pin J11	Signal	Function
1	IN1	High speed programmable digital input 1 (opto isolated from control COMRET)
2	IN2	High speed programmable digital input 2 (opto isolated from control COMRET)
3	IN3	High speed programmable digital input 3 (opto isolated from control COMRET)
4	IN4	High speed programmable digital input 4 (opto isolated from control COMRET)
5	IN5	High speed programmable digital input 5 (opto isolated from control COMRET)
6	IN6	High speed programmable digital input 6 (opto isolated from control COMRET)
7	INRET	Din return

Pin J11	Signal	Function
8	INRET	Din return
9	OUT1	Programmable output 1 (opto isolated from control COMRET)
10	OUT2	Programmable output 2 (opto isolated from control COMRET)
11	OUT3	Programmable output 3 (opto isolated from control COMRET)
12	OUT4	Programmable output 4 (opto isolated from control COMRET)
13	OUTRET	D _{out} return
14	OUTRET	D _{out} return
15	STO1	STO 1 input opto isolated from control COMRET
16	STO2	STO 2 input opto isolated from control COMRET
17	STO_RET	STO signal return.
		The two digital STO inputs are optically isolated from the other parts of the drive, and share one return line.
18	STO_RET	STO signal return.
		The two digital STO inputs are optically isolated from the other parts of the drive, and share one return line.
19	COMRET	Common return
20	GPIO5 ANALOG IN	GPIO5 Analog input
21	ANALOG1+	Analog input 1
22	ANALOG1-	Analog input 1 complement
23	COMRET	Common return
24	COMRET	Common return
25	RS-232_TX	RS-232 Transmit
26	RS-232_RX	RS-232 Receive
27	USB_VBUS	USB VBUS detector (Only for EtherCAT version)
28	COMRET	Common return
29	USB D+	USB _P line (Only for EtherCAT version)
30	USB D-	USB _N line (Only for EtherCAT version)

Table 9: I/O, STO, Analog, RS-232, and USB Connector

STO (safety): For full details on STO, see Chapter 9 in the in the MAN-G-Board Level Modules Hardware manual for full details.

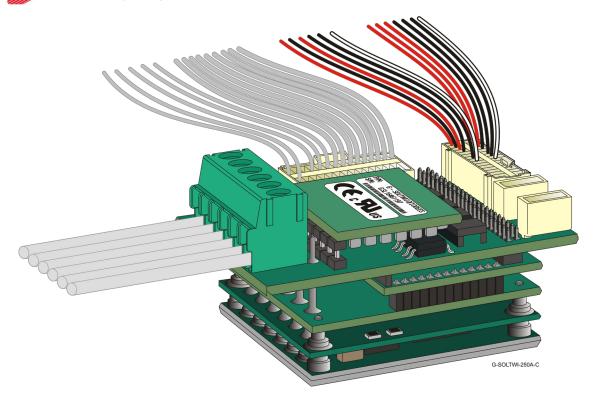


Figure 30: Connecting the USB, RS232, and Analog Input Wires

For USB, RS232, and Analog Input Wires

For short distances between the drive and control, 0.5 to 1.0 m wires can be used and shielding is not required. For longer distances than 1.0 m and/or high EMI environment, shielded and twisted wires should be used. Drain wires should be connected to Elmo COMRET.

For Digital Inputs/Outputs, STO

Wires can be always used, no need for twisting, no need for shielding.

8.4.1. **Digital Inputs**

Source PLC Voltage Level Digital Input 8.4.1.1.

Feature	Details
Standard	Isolated PLC source Conforming to IEC 61131-2
Input current	I _{in} =(Vin-7.4)/4.99 Kohm I _{in} = 920 uA @ Vin = 12 V I _{in} = 4.5 mA @ V _{in} = 30 V
High-level input voltage	12 V < Vin < 30 V
Low-level input voltage	0 V < Vin < 7 V
Minimum pulse width	>250 µsec
Execution time (all inputs): the time from application of voltage on input until execution is complete	0 < T < 250 μsec
High-speed inputs – 1–6 minimum pulse width, in high-speed mode	 T > 5 μsec if the input functionality is set to latch/capture (index/strobe). Notes: Home mode is high-speed mode and can be used for fast capture and precise homing. Highest speed is achieved when turning on optocouplers.
Capture with differential input Port A, Port B Index	$T > 0.1~\mu sec$ if the differential input functionality is set to touch probe/capture (index/strobe).
G-SOLTWI-150B Figure 31: Di	Rin = 4.99K 6.2V IN(x) INRET 1-6 gital Input PLC Source Schematic

The following are the connection diagram of Digital inputs:

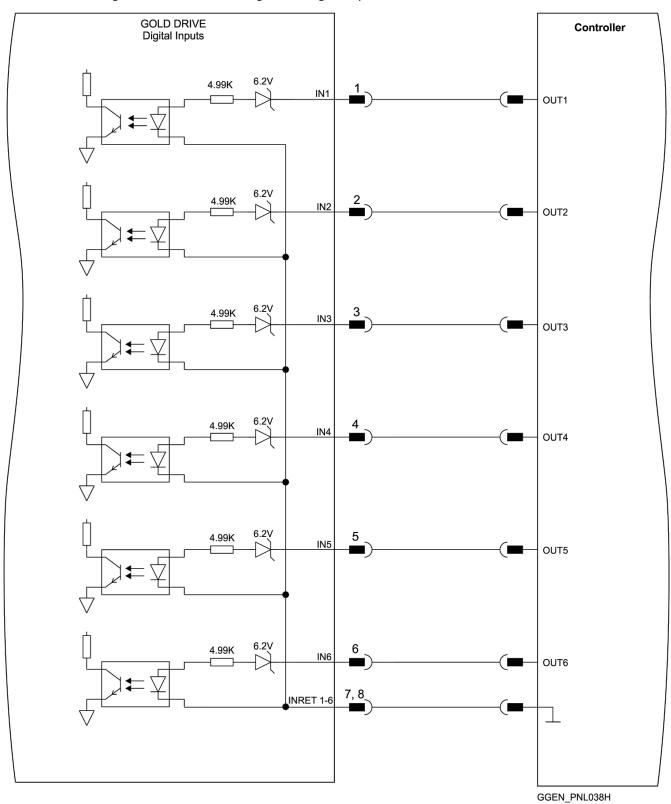


Figure 32: Digital Input Connection Diagram Example – Source PLC Option

Sink PLC Voltage Level Digital Input 8.4.1.2.

Feature	Details
Type of input	Isolated PLC Sink
Input current	I _{in} =(V _{in} -7.4)/4.99Kohm
	I _{in} = 920 uA @ V _{in} = 12 V
	I _{in} = 4.5 mA @ V _{in} = 30 V
High-level input voltage	12 V < V _{in} < 30 V
Low-level input voltage	0 V < V _{in} < 7 V
Minimum pulse width	>250 µsec
Execution time (all inputs): the time from application of voltage on input until execution is complete	0 < T < 250 μsec
High-speed inputs – 1–6 minimum pulse width, in high-speed mode	 T > 5 μsec if the input functionality is set to latch/capture (index/strobe). Notes: Home mode is high-speed mode and can be used for fast capture and precise homing. Highest speed is achieved when turning on optocouplers.
Capture with differential input Port A, Port B Index	$T > 0.1~\mu sec$ if the differential input functionality is set to touch probe/capture (index/strobe).
	Rin = 4.99K 6.2V INRET 1-6 IN(x)
Figure 33: Digital Input Sink PLC Schematic	

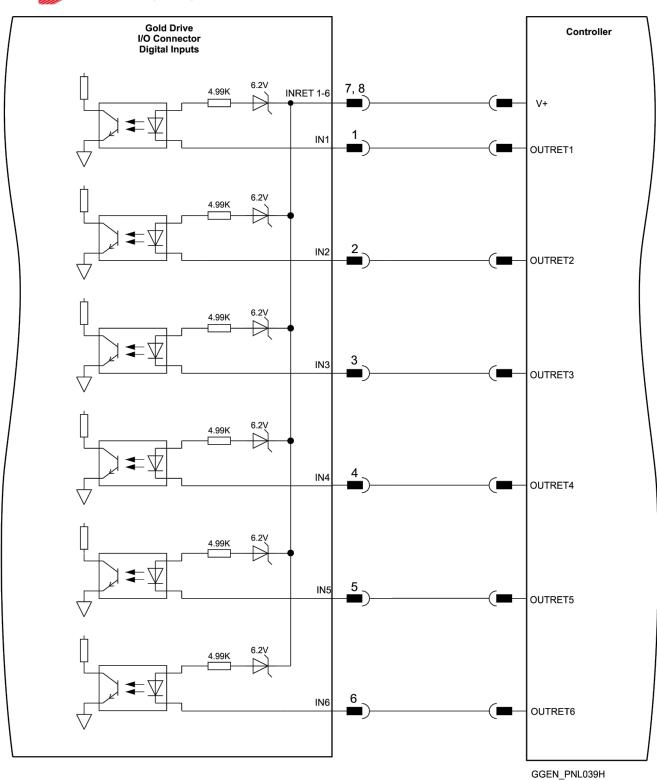


Figure 34: Digital Input Sink Mode Example – PLC voltage level Connection Diagram

Source 5V Logic Level Digital Input 8.4.1.3.

Feature	Details	
Type of input	Optically isolated	
Input current for all inputs	lin = 3.8 mA @ V _{in} = 5 V	
High-level input voltage	3.0 V < V _{in} < 10 V, 5 V typical	
Low-level input voltage	0 V < V _{in} < 0.8 V	
Minimum pulse width	> 250 µsec	
Execution time (all inputs): the time from application of voltage on input until execution is complete	0 < T < 250 μsec	
High-speed inputs – 1–6 minimum pulse width, in high-speed mode	T > 5 μsec if the input functionality is set to latch/capture (index/strobe). Notes:	
	Home mode is high-speed mode and can be used for fast capture and precise homing.	
	Highest speed is achieved when turning on optocouplers.	
Rin = 1K O IN (x)		
G-SOLTWI160A INRET 1-6 Figure 35: Digital Input 5V Logic Schematic		

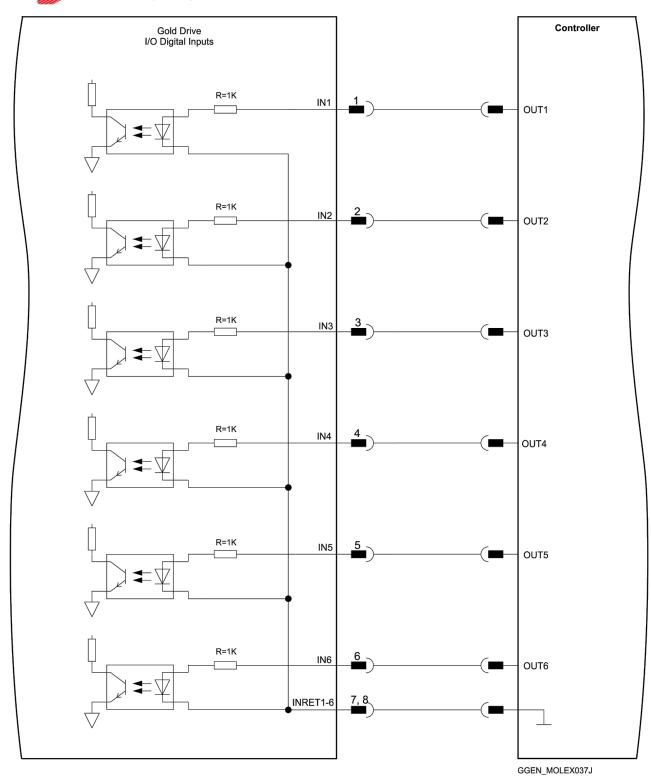


Figure 36: Digital Input Source 5V Logic Mode Connection Diagram

Digital Outputs 8.4.2.

8.4.2.1. Source PLC Voltage Level Digital Output

Feature	Details
Type of output	Optically isolated PLC source
Supply output (VDD)	12V to 30V (typically 24V)
Max. output current I _{out} (max) (V _{out} = High)	I _{out} (max) ≤ 30 mA
Collector Emitter saturation voltage	1V
T _{on} (Time from low to high) If V _{dd} = 24V	< 15usec
T _{off} (Time from high to Low)	< 250usec
R _L	The external R_L must be selected to limit output current to no more than 30 mA.
	$R_{L} = \frac{VDD - 1}{I_{out \text{ (max)}}}$
Executable time	0 < T < 250 μsec
	OUTRET :
→ N	OUT

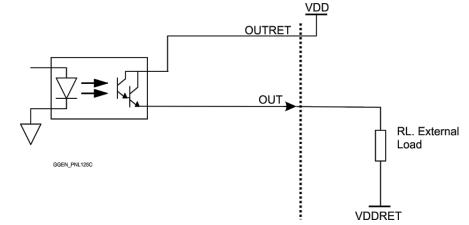


Figure 37: Digital Photodarlington Output Schematic – Source Mode PLC Level

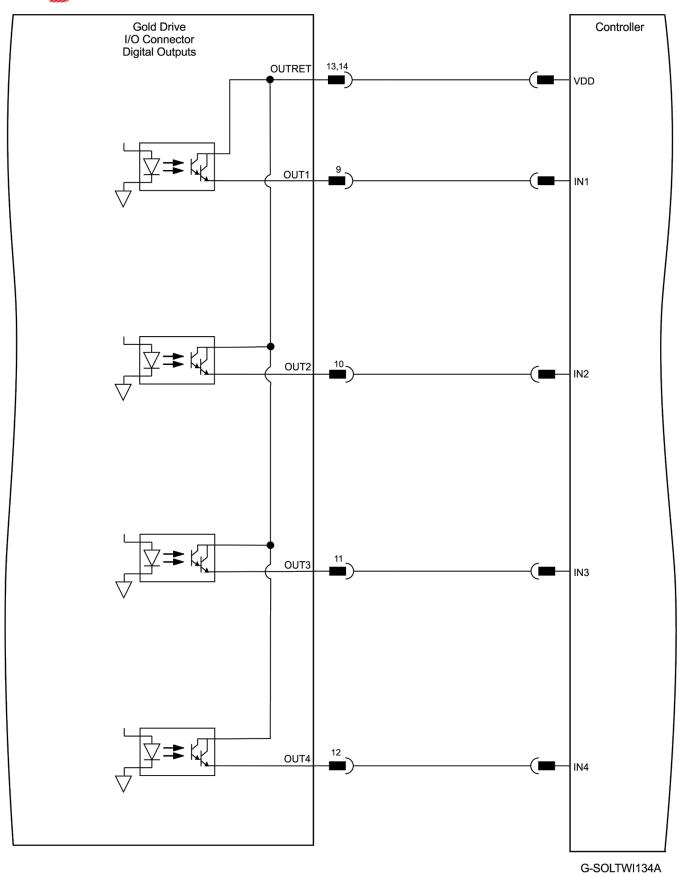


Figure 38: Digital Output Connection Diagram Example – Source PLC Option

Sink PLC Voltage Level Digital Output 8.4.2.2.

Feature	Details
Type of output	Optically isolated PLC Sink
Supply output (VDD)	12V to 30V (Typically 24V)
Max. output current I _{out} (max) (V _{out} = Low)	I _{out} (max) ≤ 30 mA
Collector Emitter saturation voltage	1V
T _{on} (Time from low to high)	
If V _{dd} = 24V	< 15usec
T _{off} (Time from high to Low)	< 300usec
R _L	The external R _L must be selected to limit output current to no more than 30 mA. $R = \frac{VDD-1}{I_{out\ (max)}}$
Executable time	0 < T < 250 μsec

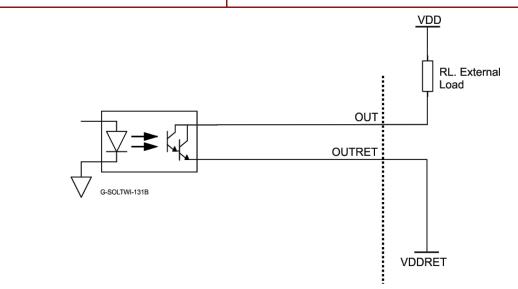


Figure 39: Digital Photodarlington Output Schematic for Sink – PLC level

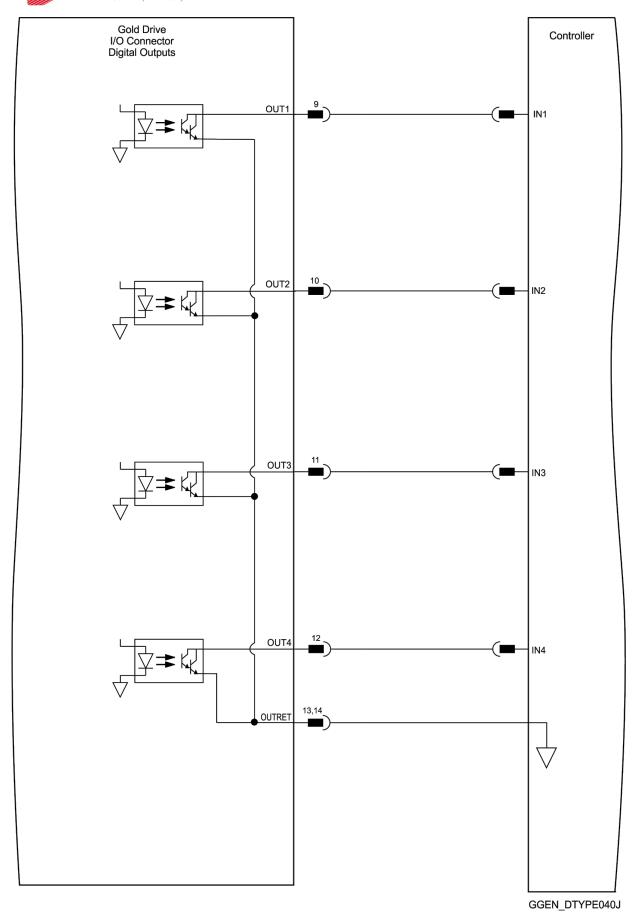


Figure 40: Digital Output Connection Diagram Example – Sink PLC Option

Digital Outputs Source 5V Logic Mode 8.4.2.3.

Feature	Details
Type of output	Optically isolated 5V Logic source
Supply output (VDD)	< 30 V (Typically 5 V)
Max. output current I _{out} (max) (V _{out} = High)	I _{out} (max) ≤ 30 mA
Collector Emitter saturation voltage	1V
T_{on} (Time from low to high) If V_{dd} = 5V	< 10usec
T _{off} (Time from high to Low)	< 100usec
R _L	The external R _L must be selected to limit output current to no more than 30 mA. $R = \frac{VDD-1}{I_{out\;(max)}}$
Executable time	0 < T < 250 μsec

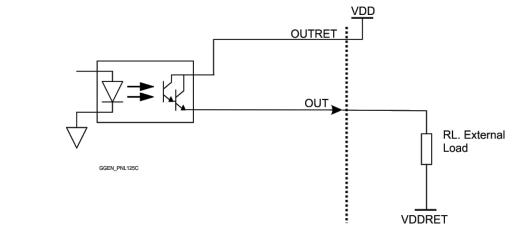


Figure 41: Digital Photodarlington Output Schematic – Source Mode 5V Logic Level

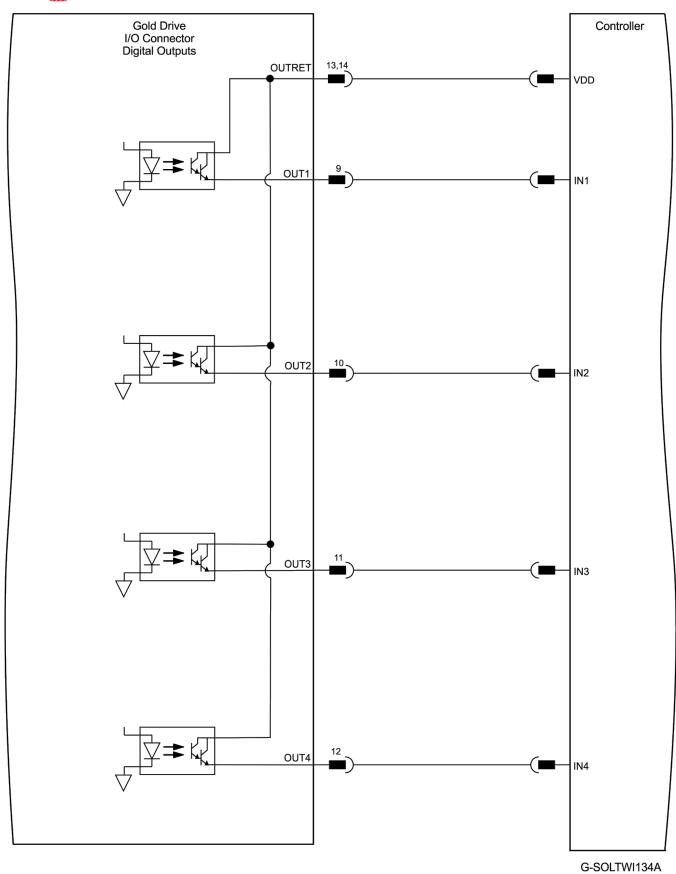


Figure 42: Digital Output Connection Diagram Example – Source 5V Logic Option

STO (Safe Torque Off) 8.4.3.

For full details on STO, see Chapter 9 in the MAN-G-Board Level Modules Hardware manual.

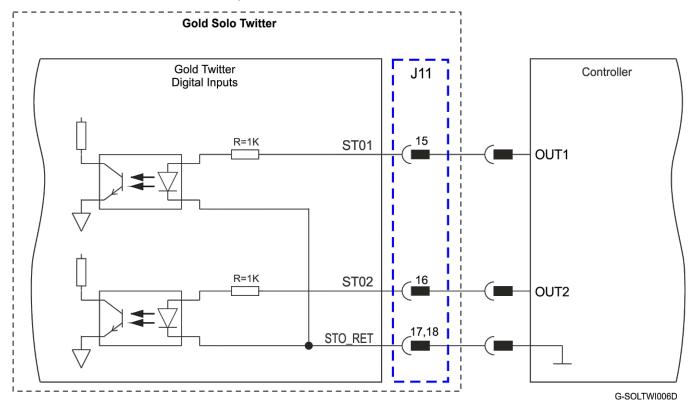


Figure 43: STO Input Connection – 5V Logic

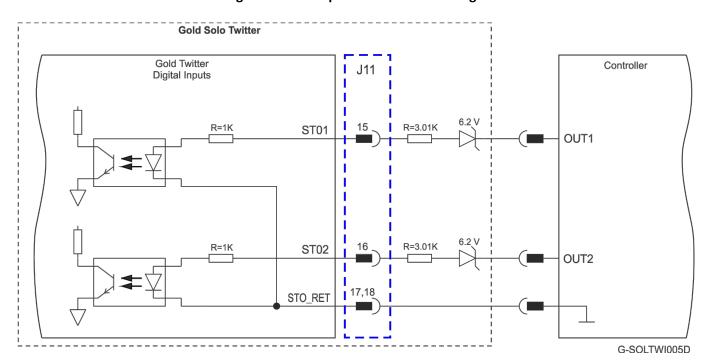


Figure 44: STO Input Connection - PLC (24V Logic)

8.4.4. **Analog Input**

For full details on Analog Inputs, see section 11.3 in the MAN-G-Board Level Modules Hardware manual.

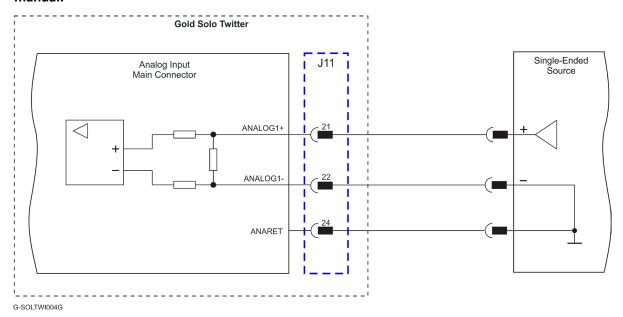


Figure 45: Analog Input

8.4.5. Standard RS-232

Figure 46 describes the Standard RS-232 connection diagram.

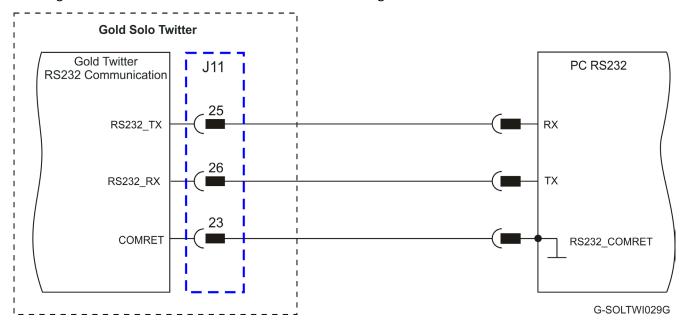


Figure 46: Standard RS-232 Connection Diagram

USB 2.0 Communication (Only for EtherCAT version) 8.4.6.

For full details on USB communication, see section 12.1 in the MAN-G-Board Level Modules Hardware manual.

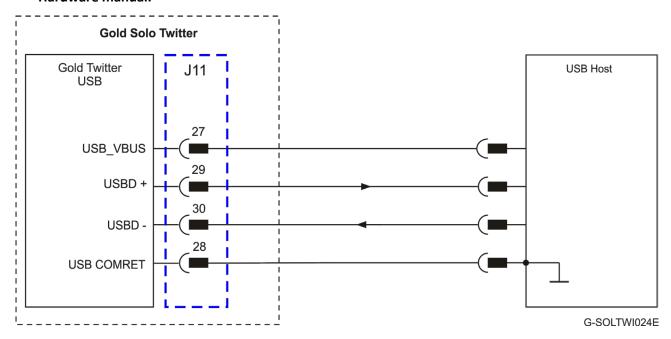


Figure 47: USB Network Diagram

EtherCAT Communications Version

Fieldbus communications are industrial network protocols for real-time distributed control that allows connection of servo drives. The Gold Solo Twitter supports the following EtherCAT fieldbus type industrial network protocol:

Fieldbus Type	Product Number
EtherCAT	G-SOLTWIXX/YYYEXXX

8.5.1. **EtherCAT IN/Ethernet Connector (J17)**

Refer to section 12.2 in the MAN-G-Panel Mounted Drives Hardware manual for more details.

Pin (J17)	Signal	Function	
1	EtherCAT_IN_TX+/Ethernet_TX+	EtherCAT in/	Ethernet transmit +
2	EtherCAT_IN_TX-/Ethernet_TX-	EtherCAT in/Ethernet transmit -	
3	EtherCAT_IN_RX+/Ethernet_RX+	EtherCAT in/Ethernet receive +	
4	EtherCAT_IN_RX-/Ethernet_RX-	EtherCAT in/Ethernet receive -	
5	COMRET	Shield drain wire	
Pin Positio	Pin Positions Cable Connector		
Pin Positions Cable Connector J17 Pin Numbers 5 Ethernet Cable Connector			

Table 10: EtherCAT IN / Ethernet Pin Assignments

EtherCAT OUT Connector (J18) 8.5.2.

See Section 12.2 in the MAN-G-Panel Mounted Drives Hardware manual for the electrical diagram.

Pin (J18)	Signal	Function	
1	EtherCAT_OUT_TX+	EtherCAT out	t transmit +
2	EtherCAT_OUT_TX- EtherCAT out transmit -		t transmit -
3	EtherCAT_OUT_RX+	EtherCAT out receive +	
4	EtherCAT_OUT_RX- EtherCAT out receive -		receive -
5	COMRET Shield drain wire		wire
Pin Positio	Pin Positions		Cable Connector
J18 Pin Numbers 1		G-SOLTWI128A-B	Pin #5 Pin #5 Ethernet Cable Connector

Table 11: EtherCAT OUT Pin Assignments

8.5.3. **EtherCAT Schematic Connections**

For full details on EtherCAT communication, see Section 12.2 in the in the MAN-G-Board Level Modules Hardware manual.

Note: The EtherCAT IN port can be configured to an Ethernet Port.

8.5.3.1. **EtherCAT Communication**

This section only describes the EtherCAT communication, and the pinout drawing of the connector.

IMPORTANT

When the EtherCAT is connected and the FoE is in operation, the USB cable connection must be disconnected.

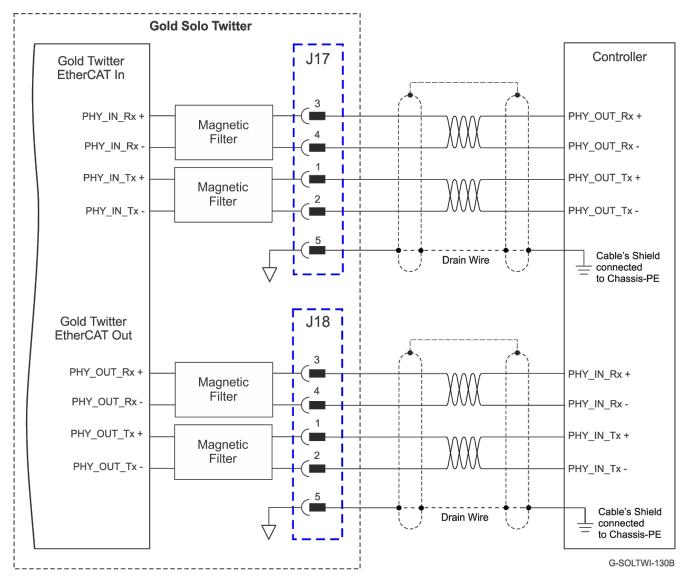
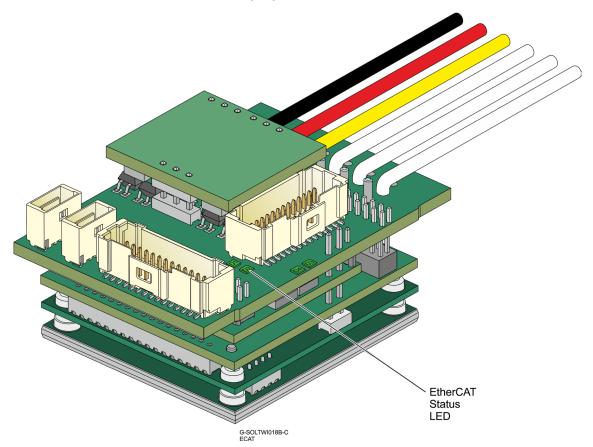
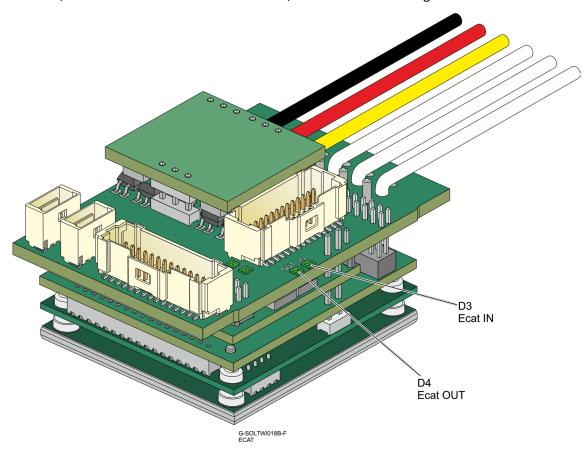


Figure 48: EtherCAT Connection Schematic Diagram

8.5.3.2. EtherCAT Status Indicator (D2)




Figure 49: EtherCAT Status LED

The EtherCAT status indicator D2 is a single red/green dual bi-colored LED that combines the green RUN indicator and the red ERROR indicator of the EtherCAT state machine. For further details, see the EtherCAT Application Manual.

8.5.3.3. EtherCAT Link Indicators (D3, D4)

The Gold Solo Twitter can serve as an EtherCAT slave device. For this purpose it has two Ports J17 and J18, which are designated as EtherCAT In and EtherCAT Out. Each of these Ports has a status LED; D3 EtherCAT In and D4 EtherCAT Out, which are shown in Figure 50.

Figure 50: Ethernet Connector LEDs

The green LEDs D3 and D4 are the link/activity indicators. They show the state of the applicable physical link and the activity on that link; blinking green, D3 for the Link Act IN, and D4 for the Link Act OUT.

CAN Communications Version

Fieldbus communications are industrial network protocols for real-time distributed control that allows connection of servo drives. The Gold Solo Twitter supports the following CAN fieldbus type industrial network protocol:

Fieldbus Type	Product Number
CAN	G-SOLTWIXX/YYY <mark>S</mark> XXX

See Section 12.4 in the MAN-G-Panel Mounted Drives Hardware manual for the electrical diagram.

8.6.1. CAN IN Connector (117)

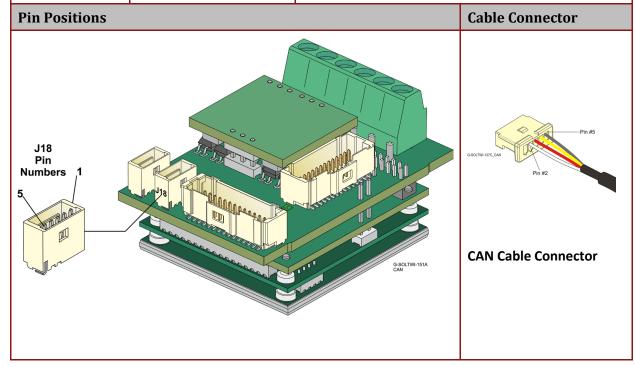

l e e e e e e e e e e e e e e e e e e e			
Pin (J17)	Signal	Function	
1	NC	NC	
2	CAN_RET	CAN Return	
3	CAN_H	CAN_H bus line (dominant	high)
4	CAN_L	CAN_L bus line (dominant low)	
5	COMRET Shield drain wire		
Pin Positions			Cable Connector
J17 Pin Numbers 1 5		C SCATWI-152A	CAN Cable Connector

Table 12: CAN IN Connector Pin Assignments

8.6.2. **CAN OUT Connector (J18)**

Pin (J18)	Signal	Function
1	NC	NC
2	CAN_RET	CAN Return
3	CAN_H	CAN_H bus line (dominant high)
4	CAN_L	CAN_L bus line (dominant low)
5	COMRET	Shield drain wire

Table 13: CAN OUT Connectors Pin Assignments

8.6.3. CAN Schematic Connections

For full details on CANopen communication, see section 14.3 in the MAN-G-Board Level Modules Hardware manual.

8.6.3.1. Interface

The Gold Solo Twitter includes the CAN transceiver, common mode choke, and a CAN Bus Protector against ESD and other harmful transient voltage events.

The following signals describe how to connect CAN to the external connector.

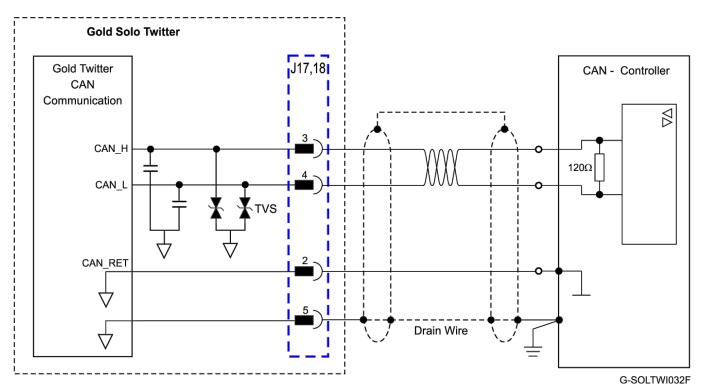


Figure 51: CAN Interface

8.6.3.2. **CAN Network Topology**

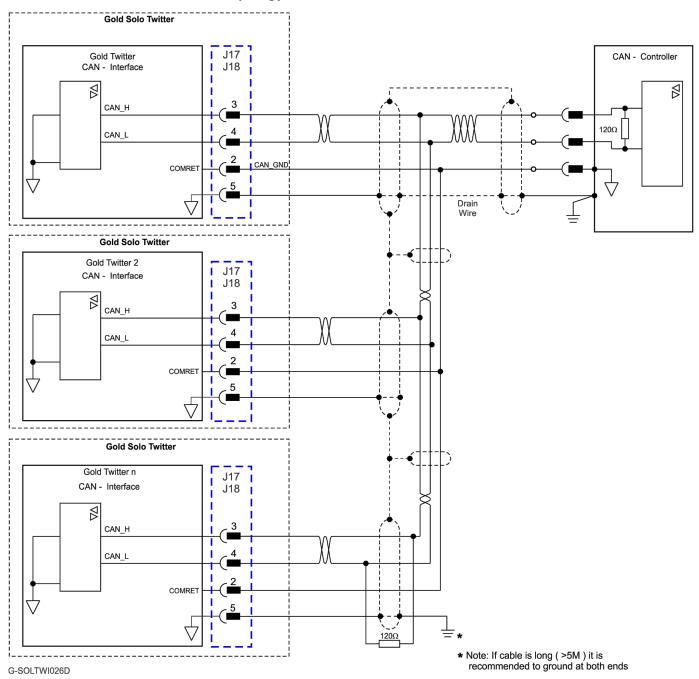


Figure 52: CAN Network Diagram - Drop Off Topology

Caution: When installing CAN communication, ensure that each servo drive is allocated a unique ID. Otherwise, the CAN network may "hang".

Note: Daisy chain topology can also be accomplished using J18.

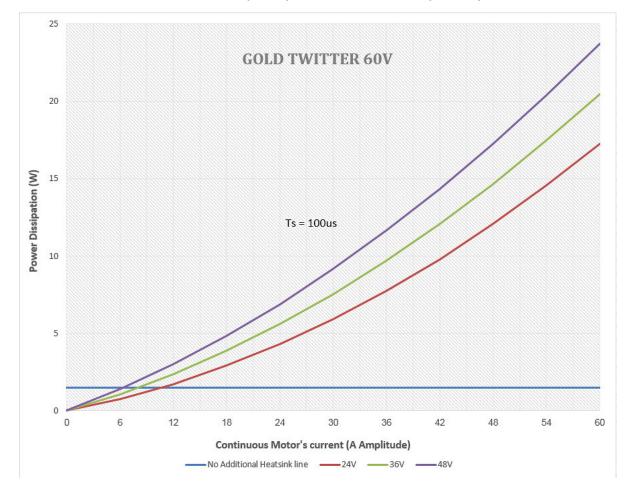
Powering Up Chapter 9:

After the Gold Solo Twitter is connected to its device, it is ready to be powered up.

Caution:

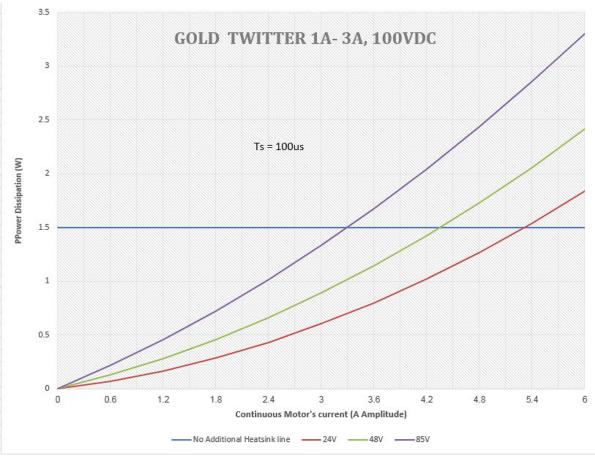
Before applying power, ensure that the DC supply is within the specified range and that the proper plus-minus connections are in order.

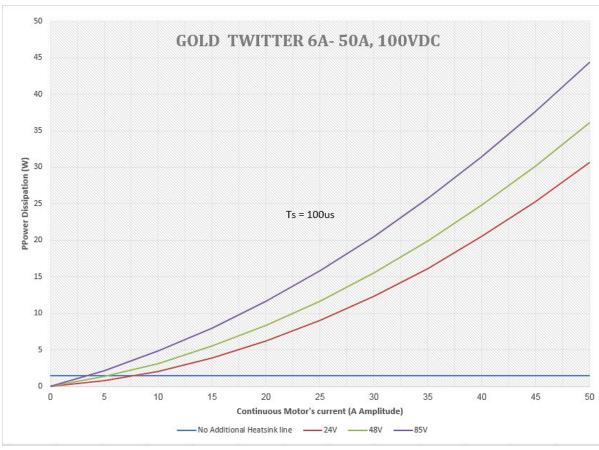
Initializing the System 9.1.

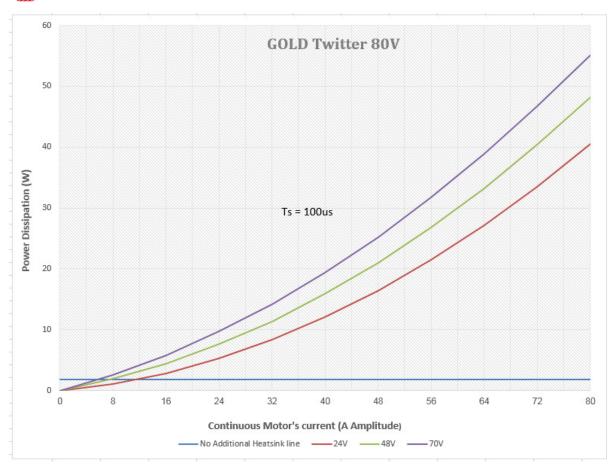

After the Gold Solo Twitter has been connected and mounted, the system must be set up and initialized. This is accomplished using the EASII, Elmo's Windows-based software application. Install the application and then perform setup and initialization according to the directions in the EASII User Manual.

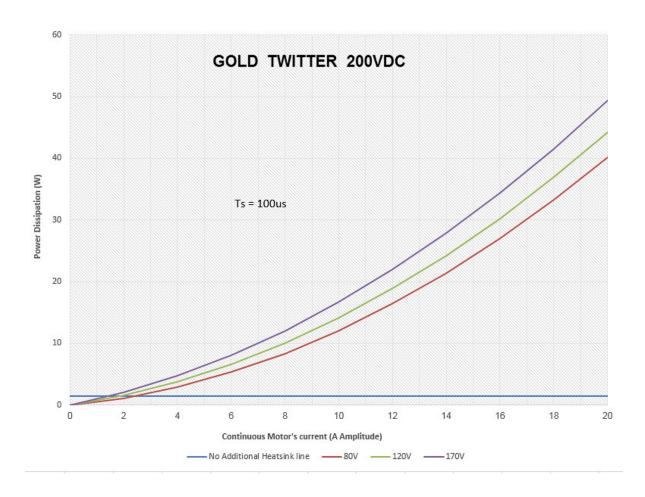
9.2. Heat Dissipation

The best way to dissipate heat from the Gold Solo Twitter is to mount it so that its heat-sink is attached to the machine chassis. If mounted with its heat-sink suspended, then for best results mount the servo drive faced upwards and leave approximately 10 mm of space between the Gold Solo Twitter's heat-sink and any other assembly.


9.2.1. **Heat Dissipation Data**


Heat Dissipation is shown graphically below. It should be noted in the graphs below that the Flat Heat Sink and Fins Heat Sink can dissipate up to 5.5W and 7.0W respectively:




MAN-G-SOLTWI (Ver. 4.001)

MAN-G-SOLTWI (Ver. 4.001)

9.2.2. How to Use the Chart

The charts above are based upon the theoretical worst-case scenario. The actual test results display a 20% -30% lower power dissipation.

The above charts indicate the net power conversion losses and exclude the control losses.

To determine if your application heat dissipation requires a heat sink:

- 1. Determine the power dissipation according to the "continuous current" and the DC bus voltage curve.
 - If the DC bus is not one of the three curves above, estimate the dissipation by interpolation. The estimation error is not critical.
- 2. The chart is calculated for continuous current operation, if the actual operation is pulsed current, add 25% to 30% to the power dissipation of the average (RMS) current.
- 3. When the Heat-Sink temperature reaches ≈ 85 °C, the Gold Solo Twitter will shut down. Design the system for continuous operation so that the maximum Heat Sink temperature should be no higher than between 80°C to 82°C.
- 4. For model G-SOLTWIXXX/YYYZZZ(Blank) or S
 - If the average heat dissipation is less than ≈1.5W (Average operating power of 100W to 200W) there will be no requirement for an external heat sink.
 - If the average Heat dissipation is higher than 1.5W then an additional heat dissipation means is required, usually by connecting to an external heat-sink.

For model G-SOLTWIXXX/YYYZZZH

- If the average heat dissipation is less than ≈4W to 5W (Average operating power of 300W to 600W) there will be no requirement for an additional external heat sink.
- If the average Heat dissipation is higher than 4W then an additional heat dissipation means is required, usually by connecting to an additional external heat-sink.
- 5. When an external Heat-Sink is required, calculate the thermal resistance of the heat sink according to:

$$\phi_{\text{°C/W}} = \frac{80^{\circ}\text{C} - T_{Ambient}}{Heat\ Dissipation}$$

Chapter 10: Dimensions

This chapter provides detailed technical dimensions regarding the Gold Solo Twitter.

10.1. EtherCAT without Heatsink

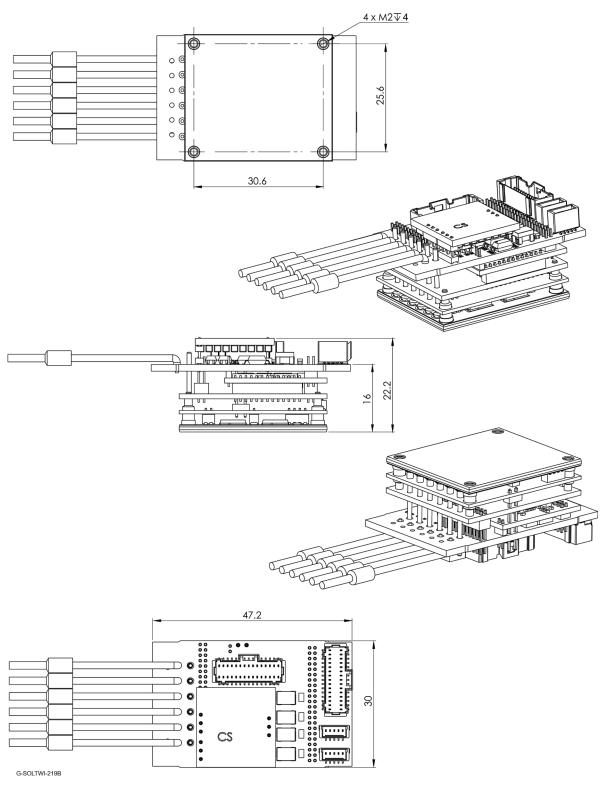


Figure 53: G-Solo Twitter –EtherCAT version with wires to power supply and motor

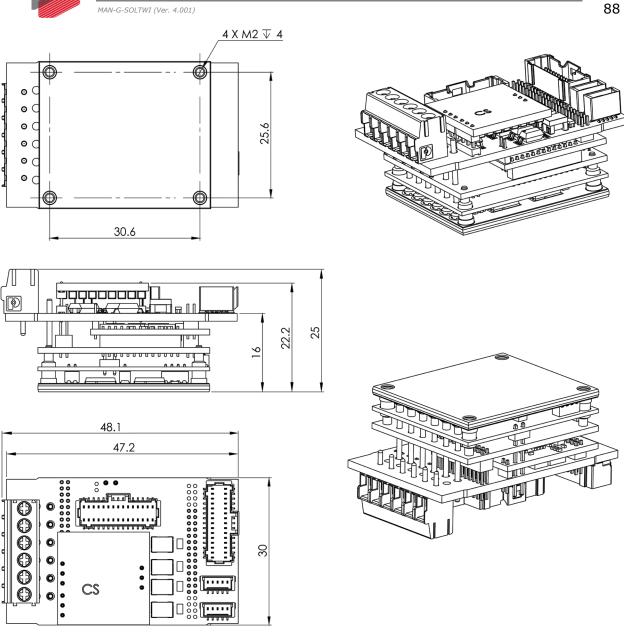


Figure 54: G-Solo Twitter – Ether CAT version with horizontal power connector

G-SOLTWI-216B

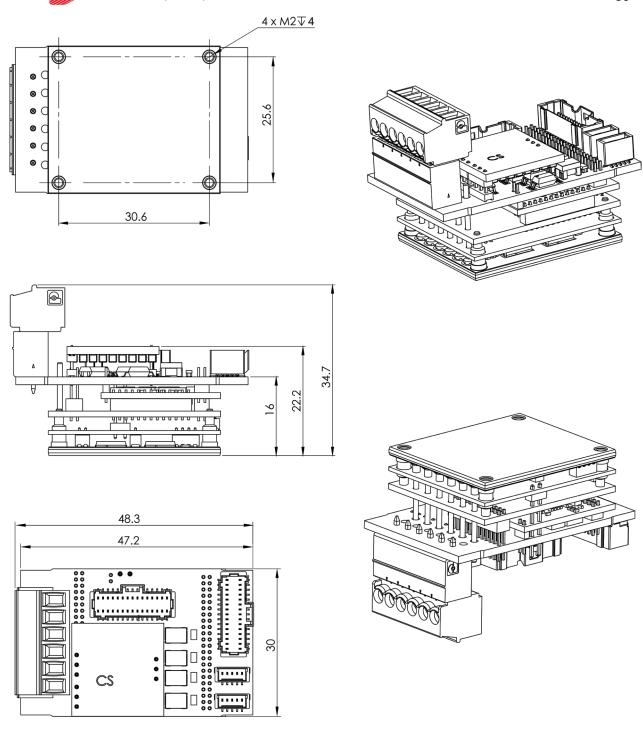


Figure 55: G-Solo Twitter –EtherCAT version with vertical power connector

G-SOLTWI-218B

10.2. EtherCAT with Heatsink

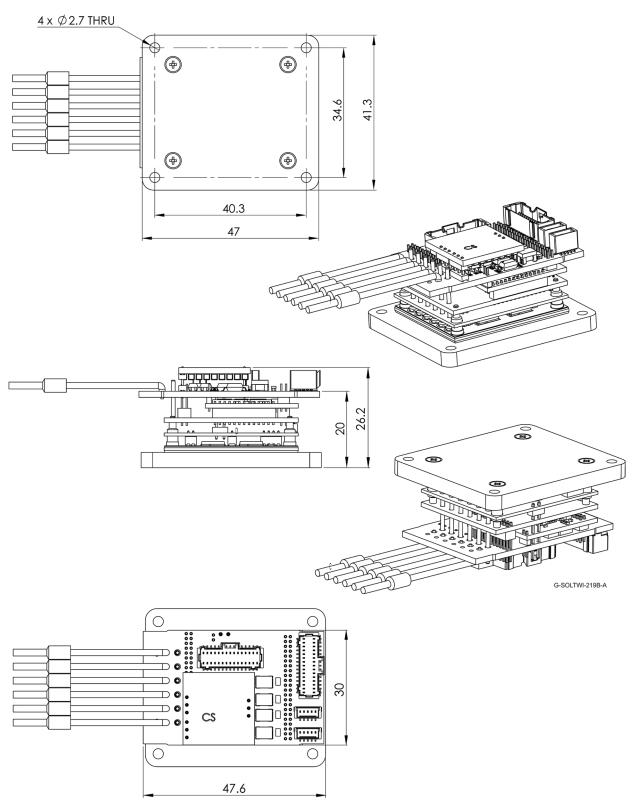


Figure 56: G-Solo Twitter –EtherCAT version with wires to power supply and motor

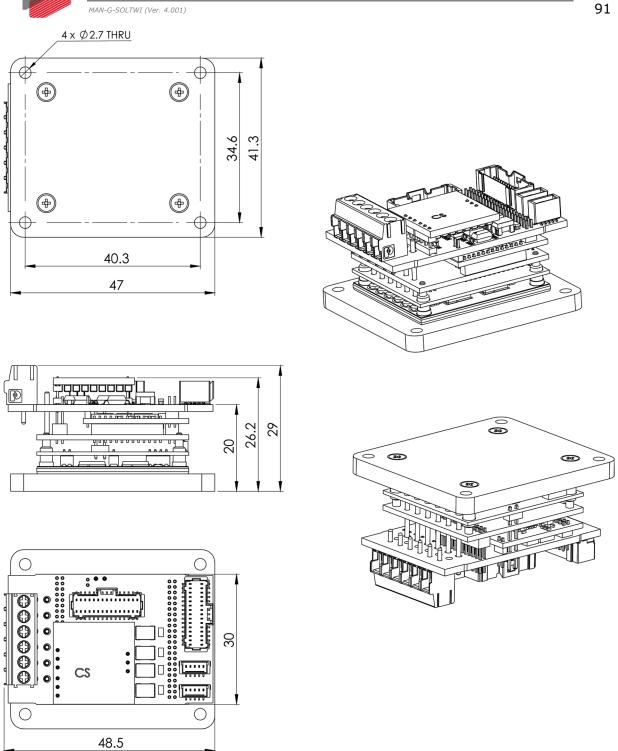


Figure 57: G-Solo Twitter –EtherCAT version with horizontal power connector

G-SOLTWI-216B-A

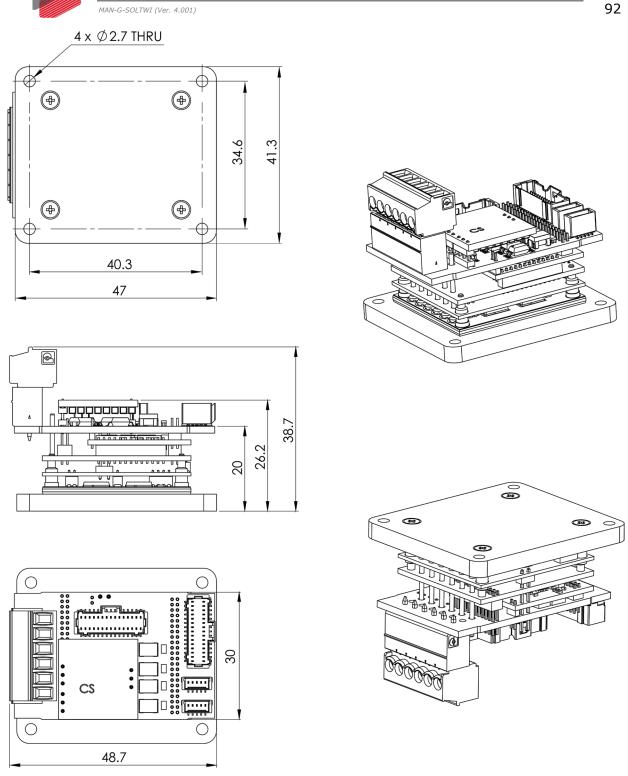


Figure 58: G-Solo Twitter –EtherCAT version with vertical power connector

G-SOLTWI-218B-A

10.3. CAN without Heatsink

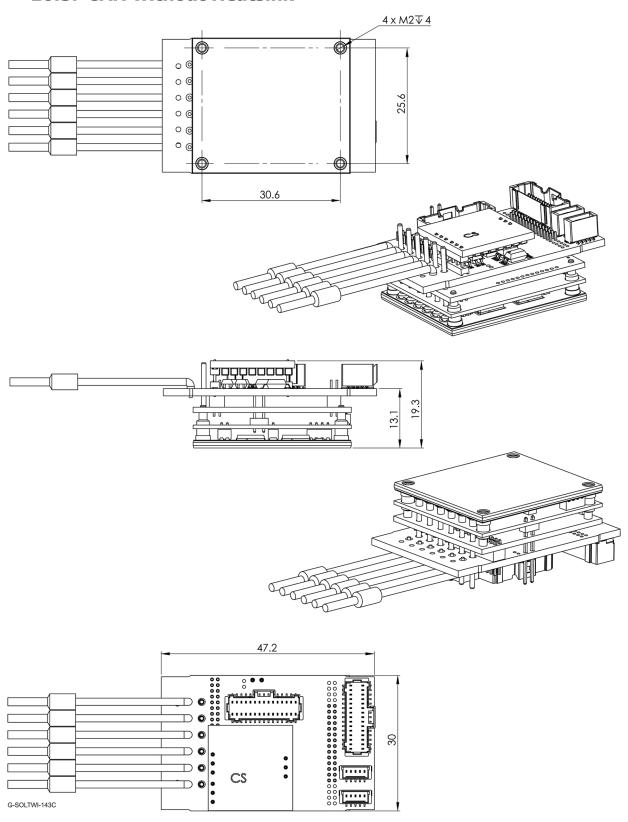


Figure 59: G-Solo Twitter -CAN version with wires to power supply and motor

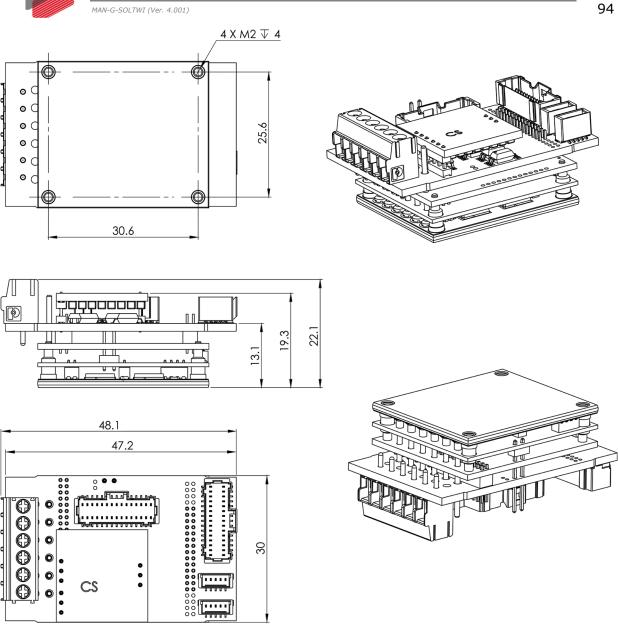


Figure 60: G-Solo Twitter –CAN version with horizontal power connector

G-SOLTWI-221B

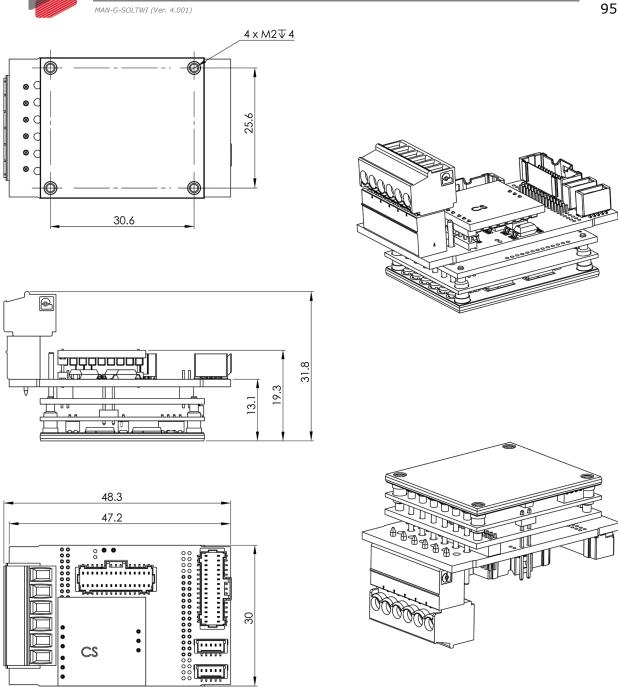


Figure 61: G-Solo Twitter –CAN version with vertical power connector

G-SOLTWI-144C

10.4. CAN with Heatsink

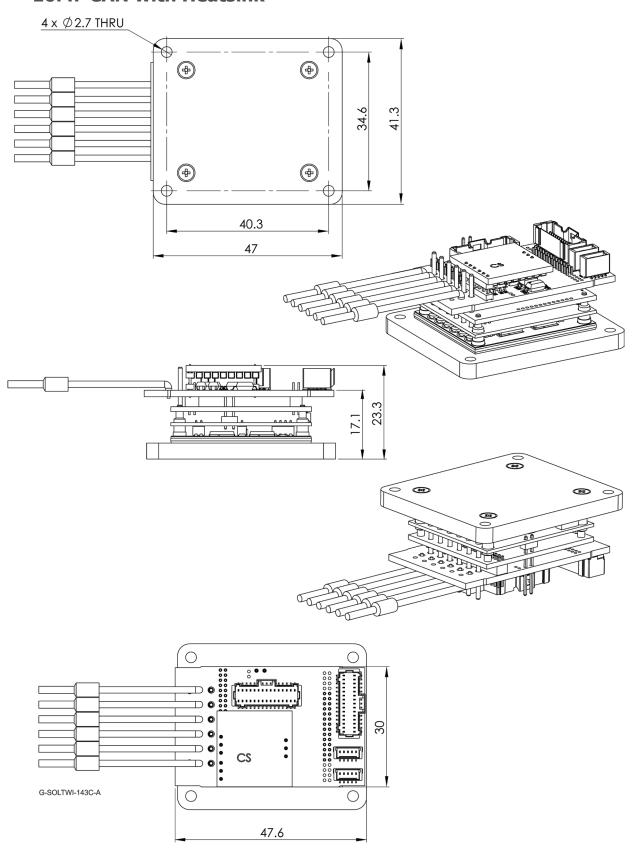


Figure 62: G-Solo Twitter -CAN version with wires to power supply and motor

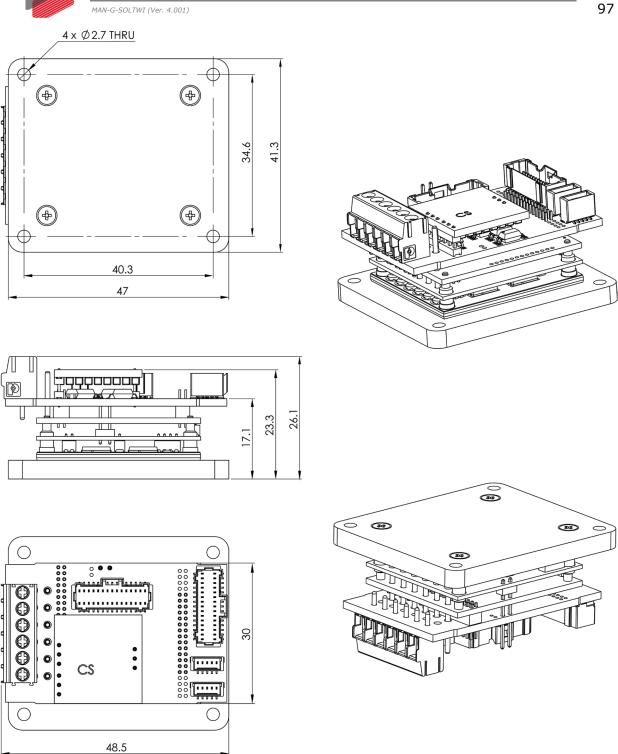


Figure 63: G-Solo Twitter –CAN version with horizontal power connector

G-SOLTWI-221B-A

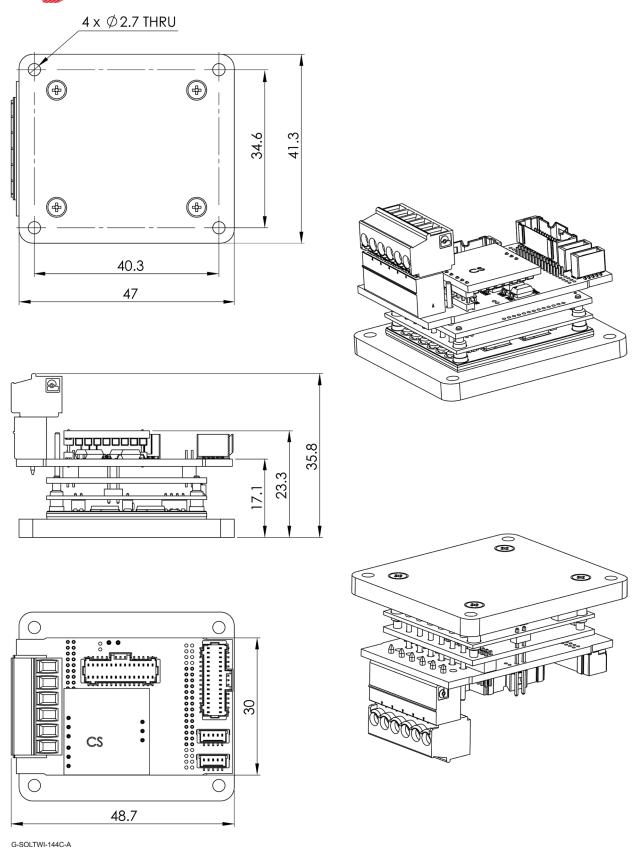


Figure 64: G-Solo Twitter –CAN version with vertical power connector

Chapter 11: Accessories

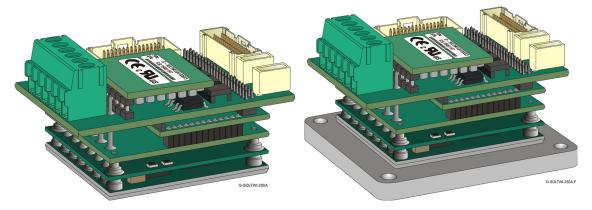
The model G-SOLTWIXXX/YYYZZZH is integrated with the Flat Heatsink P/N G-TWIHSFLAT01.

The following describes the accessory kits available for the Gold Solo Twitter.

Part Number	Description
CBL-GSOLTWIKIT03	Kit cable for EtherCAT model
CBL-GSOLTWIKIT04	Kit cable for CAN model
CBL-GSOLTWIKIT05	CONNECTORS AND PINS KIT
G-TWIHSFLAT01	Flat Heat-Sink Kit
G-TWIHSFINS01	FINs Heat-Sink Kit

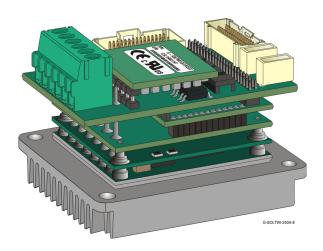
A specific Crimping Tool (available for purchase from Elmo) is required to mount extra connecting pins on the wires. A number of wires are provided in the kit as pre-crimped for convenience:

Crimping Tool Molex P/N 63819-1500 Elmo P/N TOOL-P000040



Pins for Single Row Connector MOLEX P/N 501334-0100 Pins for Dual Row Connector MOLEX P/N 501193-3000

MAN-G-SOLTWI (Ver. 4.001)



Optionally, the Gold Solo Twitter has two standard heat-sink configurations which are obtainable separately as kit accessories from Elmo:

Default Heat Sink

Flat Heat Sink (P/N G-TWIHSFLAT01)

Fins Heat Sink (P/N G-TWIHSFINS01)

11.1. Accessories Heat Sink Dimensions

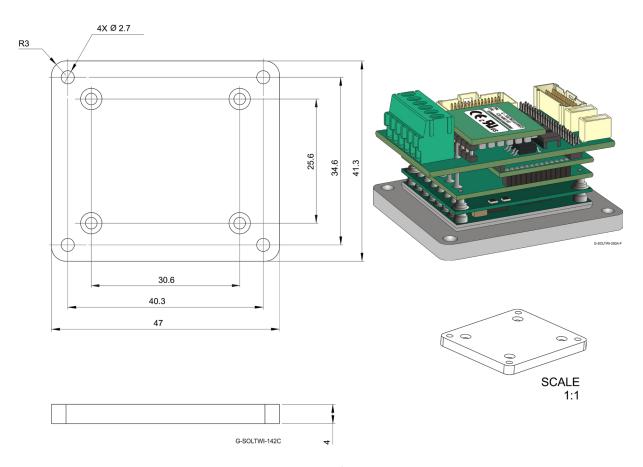


Figure 65: G-Solo Twitter – Flat Heat Sink (P/N G-TWIHSFLAT01) Dimensions

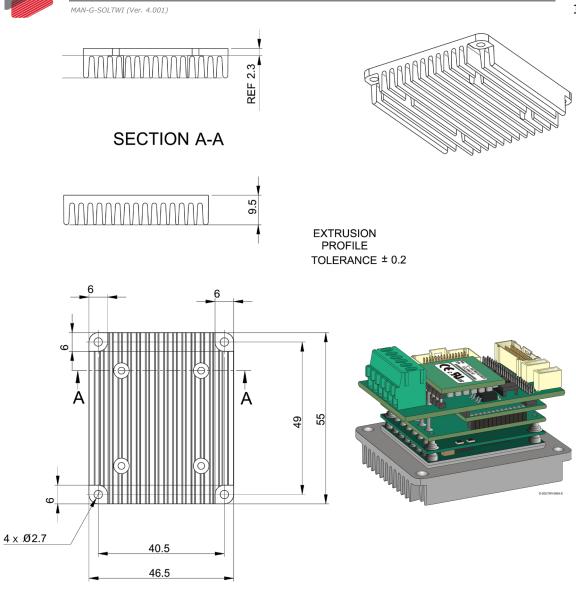


Figure 66: G-Solo Twitter – Fins Heat Sink (P/N G-TWIHSFINS01)

Inspiring Motion Since 1988

For a list of Elmo's branches, and your local area office, refer to the Elmo site www.elmomc.com

