

Release Notes for Drive

.NET Library 1.0.0.8

Version 1.0.0.8

July 2015 (Ver. 1.000) www.elmomc.com

http://www.elmomc.com/

Notice

 www.elmomc.com

This guide is delivered subject to the following conditions and restrictions:

 This guide contains proprietary information belonging to Elmo Motion Control Ltd. Such

information is supplied solely for the purpose of assisting users of the Gold Line technology.

 The text and graphics included in this manual are for the purpose of illustration and reference

only. The specifications on which they are based are subject to change without notice.

 Information in this document is subject to change without notice.

Elmo Motion Control and the Elmo Motion Control logo are registered

trademarks of Elmo Motion Control Ltd.

EtherCAT Conformance Tested. EtherCAT® is a registered trademark and

patented technology, licensed by Beckhoff Automation GmbH, Germany.

CANopen compliant. CANopen® is a registered trademark and patented

technology, licensed by CAN in Automation (CiA) GmbH,

Kontumazgarten 3, DE-90429 Nuremberg, Germany.

Document no. MAN-EASII-RN (Ver. 1.000)

Copyright  2014

Elmo Motion Control Ltd.

All rights reserved.

Revision History

Version Date Details

Ver. 1.000 July 2015 Initial version

http://www.elmomc.com/

Table of Contents
MAN-EASII-RN (Ver. 1.000)

 |www.elmomc.com Table of Contents

Chapter 1: General ... 1-4

Using the Library ...1-4

Chapter 2: Communicating with the Drives ... 2-5

Means of Communication to the Drive ...2-5

Communication Information ...2-5

Communication Object ...2-5

Sending Commands to the Drive ...2-5

Using the Drive Personality ...2-6

Chapter 3: Uploads and Downloads .. 3-7

Upload and Download Process Activation ..3-7

Upload and Download Process Monitoring ..3-7

Chapter 4: Drive Recording ... 4-8

Recording Setup ..4-8

Recording Activation ...4-8

Recording Process Monitoring ..4-8

Uploading the Recording Data ..4-9

Chapter 5: User Program Compilation ..5-10

Compilation Settings ...5-10

Compilation Process ..5-10

http://www.elmomc.com/

Release Notes for Drive .NET Library 1.0.0.8

MAN-EASII-RN (Ver. 1.000

 |www.elmomc.com

1-4

Release Notes for Drive
.NET Library 1.0.0.8

Chapter 1: General

The following release notes highlight the features of the first Drive .NET library release

(version 1.0.0.8).

This library provides a C# based API for connecting with the Elmo drives and activating those

drives.

This document contains general information and it doesn't replace the library documentation

and the example applications also available with the library or on the Elmo web site.

Please note: Version 1.0.0.8 includes spelling corrections to methods from version 1.0.0.7.

This release is for the use of all customers.

Using the Library

The library contains a few DLL (dynamic library) files.

In order to use the library, you should add the

ElmoMotionControlComponents.Drive.EASComponents.dll to your project references.

The other DLL files will be loaded by the main library, as required:

 The ElmoMotionControlComponents.GMAS.MMCLibDotNET.dll is used when

connecting to a CAN Gateway drive via a CAN G-MAS connection

 The canlibCLSNET32.dll and canlibCLSNET64.dll files are used for connecting to a

drive using CANOpen protocol via a Kvaser CAN card

You do not need to include those other libraries in your project, the main library will

automatically load them, as necessary.

http://www.elmomc.com/

Release Notes for Drive .NET Library 1.0.0.8

MAN-EASII-RN (Ver. 1.000

 |www.elmomc.com

2-5

Release Notes for Drive
.NET Library 1.0.0.8

Chapter 2: Communicating with the Drives

Means of Communication to the Drive

The drive .NET library allows you to communicate with the Elmo drives in all the

communication methods supported by the drives, as detailed below:

 RS232 – communication through a serial RS232 port

 USB – communication through a USB port, using the Elmo USB driver

 UDP – communication using the UDP protocol over Ethernet connection

 Direct CANOpen – communication using the CANOpen protocol through a 3rd party

CAN card connected to the PC

 CAN Gateway – communication using the CANOpen protocol through a GMAS CAN

master

Communication Information

The object defines the communication method with the drive a set of classes implementing

the interface IdriveCommunicationInfo.

In order to establish communication with the drive, first create an instance of a class

implementing this interface using the DriveCommunicationFactory.

Communication Object

The class connecting to the drive is the DriveCommunication, implementing the interface

IDriveCommunication.

In order to connect to a drive, call the CreateCommunication method of the

DriveCommunicationFactory with the desired communication info object.

After that, you can call the Connect method of the communication object in order to connect

to the drive and the Disconnect method in order to disconnect from the drive.

Sending Commands to the Drive

The drive responds to textual commands composed of two-letters with or without index,

such as "AC", "MO", "UI[1]", "CA[41]" etc.

The communication object allows you to send commands to the drive and receive the drive

response, or an error object in case of any error.

You can send a command to the drive by calling the communication object's SendCommand or

SendCommandAnalyzeError methods.

The SendCommand method throws an exception if encountered any error, while the

SendCommandAnalyzeError method returns an error object as an output parameter.

The error object (or the Exception thrown) contains both a drive error code and a library

error code which are filled with non-zero values when relevant.

http://www.elmomc.com/

Release Notes for Drive .NET Library 1.0.0.8

MAN-EASII-RN (Ver. 1.000

 |www.elmomc.com

2-6

Release Notes for Drive
.NET Library 1.0.0.8

Using the Drive Personality

The drive personality is a part of the drive Firmware version which describes some of the

current firmware's qualities and parameters.

The library can upload the personality data from the drive and save it into an XML file called

the personality file.

The library uses the personality model for many purposes, including analyzing drive error

codes, using the drive parameters list, obtaining the list of recording signals, etc.

It is recommended to run the method CreatePersonalityModel in the communication

object, giving it the personality file path.

http://www.elmomc.com/

Release Notes for Drive .NET Library 1.0.0.8

MAN-EASII-RN (Ver. 1.000

 |www.elmomc.com

3-7

Release Notes for Drive
.NET Library 1.0.0.8

Chapter 3: Uploads and Downloads

Upload and Download Process Activation

The communication object implements the interface which contains the methods which

activate all the possible uploads and downloads processes:

 Upload personality

 Upload parameters in binary format

 Upload parameters in textual format

 Upload user program

 Download parameters in binary format

 Download parameters in textual format

 Download user program

 Download firmware

 Download PAL

Each upload / download activation method returns an object implementing the interface

IUploadDownloadModel.

In order to start the process, call the model's Start method.

You can cancel the upload / download process by calling the model's Cancel method. Please

note only some of the upload / download methods can be canceled, and some of them will

still affect the drive even if canceled in the middle.

Upload and Download Process Monitoring

During the upload / download process, the model will send the progress events which will

enable the process monitoring:

 OnStart – indicates the process has started

 OnProgress – indicates progress in the process

 OnFinish – indicates the process has finished successfully

 OnFailed – indicates the process has failed

 OnCancel – sent when the process was canceled

The events do not contain any information, all information regarding the process status and

progress is located in the model.

http://www.elmomc.com/

Release Notes for Drive .NET Library 1.0.0.8

MAN-EASII-RN (Ver. 1.000

 |www.elmomc.com

4-8

Release Notes for Drive
.NET Library 1.0.0.8

Chapter 4: Drive Recording

Recording Setup

Before you start recording you must configure the recording setup, which is contained in the

class RecordingSetup.

The RecordingSetup class contains the following properties which are essential for the

recording:

 TriggerSetup – defines the recording's trigger setup

 TimeResolution – defines the recording resolution or sampling rate in the drive, i.e.

every how many cycles the drive should record a sample

 RecordingLength – defines the number of samples taken during the recording

 SignalData – a list of class RecordingSignalSetup instances, each defines a signal to be

recorded

Recording Activation

The communication class contains a method called GetRecordingObject, which returns an

instance of a class implementing the IDriveRecording interface.

This object contains a method called ConfigureRecording, which allows you to configure the

recording with the RecordingSetup object you prepared.

After that you can start the recording by calling the recording object's StartRecording

method.

The recording can be stopped at any phase by calling the recording object's StopRecorder

method.

Recording Process Monitoring

In order to monitor the recording process you need to establish your own worker or thread

which calls the recording object's GetRecordingStatus method in a loop.

This method returns an enumeration of type RecordingStatus with the following possible

values:

 Roff – indicates recording has stopped in the middle due to error or cancelation

 Rwait – indicates the drive is waiting for trigger

 REnd – indicates recording was completed successfully

 RProgress – indicates recording is in progress

http://www.elmomc.com/

Release Notes for Drive .NET Library 1.0.0.8

MAN-EASII-RN (Ver. 1.000

 |www.elmomc.com

4-9

Release Notes for Drive
.NET Library 1.0.0.8

Uploading the Recording Data

When recording has reached the REnd status, you can upload the recording data.

This is done by calling the recording object's UploadRecordingData method, which returns an

instance of class RecordingData.

The RecordingData class contains a Dictionary of the recorded signals data where the keys

are the signals IDs and the values are a list of double variables containing each signal's

recorded data.

http://www.elmomc.com/

Release Notes for Drive .NET Library 1.0.0.8

MAN-EASII-RN (Ver. 1.000

 |www.elmomc.com

5-10

Release Notes for Drive
.NET Library 1.0.0.8

Chapter 5: User Program Compilation

Compilation Settings

Setting up the compilation is done by creating an instance of the class CompilerSettings.

This class contains, among others, the following properties needed for the compilation:

 ProgramPath – the path to the program ("*.ehl") file to be compiled

 ProgramImagePath – the path to the compiled image created in the compilation

 CompilerFolder – the path to the folder where the compiler should be located

 PersonalityPath – the path to the personality file of the drive version according to

which the compilation will be done

Compilation Process

Basically, the compiler takes the program source from the ProgramPath property of the

settings object, compiles it and creates the image file in the location indicated by the

ProgramImagePath property of the settings object.

The actual compilation is done by a compiler which sits in the CompilerFolder folder. This

folder and its content is built according to a specific drive firmware version using the drive

personality file.

The .NET library compiler can also build the specific drive firmware version drive compiler if

needed.

http://www.elmomc.com/

