Engineering Data CSF-Mini Gearboxes

1. General 03
1.1 Description of Safety Alert Symbols 04
1.2 Disclaimer and Copyright 04
2. Safety and Installation Instructions 05
2.1 Hazards 05
2.2 Intended Purpose 06
2.3 Non Intended Purpose. 06
2.4 Declaration of Conformity 07
3. Technical Descriptions 08
3.1 Product Description 08
3.2 Ordering code 09
3.3 Technical Data 10
3.3.1 Generaly Technical Data10
3.3.2 Dimensions 11
3.3.3 Accuracy 23
3.3.4 Torsional Stiffness 23
3.3.5 Bearings 24
3.3.6 Materials Used 25
4. Driving Arrangements 26
4.1 Selecting Harmonic Drive ${ }^{\oplus}$ Gears 28
4.1.1 Torque Based Dimensioning 29
4.1.2 Life of the Wave Generator Bearing 31
4.1.3 Stiffness Based Dimensioning 32
4.2 Calculation of the Torsion Angle 34
4.3 Efficiency Versus Load 35
4.3.1 Efficiency Calculations 35
4.3.2 Efficiency Tables 36
4.4 No Load Running Torque 40
4.4.1 No Load Running Torque 40
4.5 Output Bearing Operating Life 42
4.5.1 Output Bearing at Oscillating Motion 44
4.6 Permissible Static Tilting Moment 45
4.7 Angle of Inclination 45
4.8 Lubrication 46
4.8.1 Grease Lubrication 46
4.8.2 Oil Lubrication 48
4.9 Axial Forces at the Wave Generator CSF-1U-CC, [SF-2XH-J 49
5. Installation and Operation 50
5.1 Transport und Storage. 50
5.2 Gear Condition at Delivery 50
5.3 Assembly Information. 50
5.4 Recommended Tolerances for Assembly CSF-1U-CC, CSF-2XH-J 51
5.5 Lubrication 52
5.5.1 Grease Lubrication CSF-1U-CC, CSF-2XH-J 52
5.6 Preparation for Assembly 52
5.7 Assembly 53
5.7.1 Motor Assembly CSF-1U-CC, CSF-2XH-J 53
5.7.2 Mounting the Wave Generator (WG) to the Motor Shaft 54
5.7.3 Check before assembly of the Wave Generator (WG) 55
5.7.4 Assembly of the Wave Generator (WG) into the Flexspline (FS). 55
5.7.5 Assembly Control 55
5.7.6 Assembly of the Output Flange 56
5.7.7 Assembly of the Housing 56
6. Glossary 57
6.1 Technical Data57
6.2 Labelling, Guidelines and Regulations 63

1. General

About this documentation

This document contains safety instructions, technical data and operation rules for products of Harmonic Drive AG. The documentation is aimed at planners, project engineers, commissioning engineers and machine manufacturers, offering support during selection and calculation of the servo actuators, servo motors and accessories.

Rules for storage

Please keep this document for the entire life of the product, up to its disposal. Please hand over the documentation when re-selling the product.

Additional documentation

For the configuration of drive systems using the products of Harmonic Drive AG, you may require additional documents. Documentation is provided for all products offered by Harmonic Drive AG and can be found in pdf format on the website.
www.harmonicdrive.de

Third-party systems

Documentation for parts supplied by third party suppliers, associated with Harmonic Drive ${ }^{\oplus}$ components, is not included in our standard documentation and should be requested directly from the manufacturers.

Before commissioning products from Harmonic Drive AG with servo drives, we advise you to obtain the relevant documents for each device.

Your feedback

Your experiences are important to us. Please send suggestions and comments about the products and documentation to:

Harmonic Drive AG
Marketing and Communications
Hoenbergstraße 14
65555 Limburg / Lahn
Germany
E-Mail: info@harmonicdrive.de

Symbol	Meaning
!	
MARER	Indicates an imminent hazardous situation. If this is not avoided, death or serious injury could occur.
Indicates a possible hazard. Care should be taken or death or serious injury	
may result.	

\triangle ATTENTION

ADVICE

Indicates a possible hazard. Care should be taken or slight or minor injury may result.

Describes a possibly harmful situation. Care should be taken to avoid damage to the system and surroundings.

INFORMATION

Warning of a general hazard. The type of hazard is determined by the specific warning text.

Warning of dangerous electrical voltage and its effects.

Beware of hot surfaces.

Beware of suspended loads.

Precautions when handling electrostatic sensitive components.

1.2 Disclaimer and Copyright

The contents, images and graphics contained in this document are predected by copyright. In addition to the copyright, logos, fonts, company and product names can also be predected by brand law or trademark law. The use of text, extracts or graphics requires the permission of the publisher or rights holder.

We have checked the contents of this document. Since errors cannot be ruled out entirely, we do not accept liability for mistakes which may have occurred. Notification of any mistake or suggestions for improvements will be gratefully received and any necessary correction will be included in subsequent editions.

2. Safety and Installation Instructions

Please take note of the information and instructions in this document. Specialy designed models may differ in technical detail. If in doubt, we strong recommend that you contact the manufacturer, giving the type designation and serial number for clarification.

2.1 Hazards

今

\triangle DANGER

Electric products have dangerous live and redating parts. All work during connection, operation, repair and disposal must be carried out by qualified personnel as described in the standards EN50110-1 and IEC 60364! Before starting any work, and especially before opening covers, the actuator must be properly isolated. In addition to the main circuits, the user also has to pay attention to any auxilliary circuits.

Observing the five safety rules:

- Disconnect mains
- Prevent reconnection
- Test for absence of harmful voltages
- Ground and short circuit
- Cover or close off nearby live parts

The measures taken above must only be withdrawn when the work has been completed and the device is fully assembled. Improper handling can cause damage to persons and property. The respective national, local and factory specific regulations must be adhered to.

($\left(\cdot i^{\prime}\right)$)
 \triangle DANGER

Electric, magnetic and electromagnetic fields are dangerous, in particular for persons with pacemakers, implants or similiar. Vulnerable groups must not be in the immediate vicinity of the products themselves.

\triangle DANGER

Built-in holding brakes alone are not functional safe. Particularly with unsupported vertical axes, the functional safety and security can only be achieved with additional, external mechanical brakes.

\triangle WARNING

The successful and safe operation of gears, products requires proper transport, storage and assembly as well as correct operation and maintenance.

The surface temperature of gears, motors and actuators can exceed 55 degrees Celsius. The hot surfaces should not be touched.

ADVICE

Movement and lifting of products with a mass $>20 \mathrm{Kg}$ should only be carried out with suitable lifting gear.

ADVICE

Cables must not come into direct contact with hot surfaces.

INFORMATION

Special versions of drive systems and motors may have differing specifications. Please consider all data sheet, catalogues and offers etc. sent concerning these special versions.

2.2 Intended Purpose

The Harmonic Drive ${ }^{\circledR}$ products are intended for industrial or commercial applications. They comply with the relevant parts of the harmonised EN 60034 standards series.

Typical areas of application are robotics and handling, machine tools, packaging and food machines and similar machines.
The products may only be operated within the operating ranges and environmental conditions shown in the documentation (altitude, degree of predection, temperature range etc).
Before plant and machinery which have Harmonic Drive ${ }^{\oplus}$ products built into them are commissioned, the compliance must be established with the Machinery Directive, Low Voltage Directive and EMC guidelines.

Plant and machinery with inverter driven motors must satisfy the predection requirements in the EMC guidelines. It is the responsibility of the installer to ensure that installation is undertaken correctly.
Signal and power lines must be shielded. The EMC instructions from the inverter manufacturer must be observed in order that installation meets the EMC regulations.

2.3 Non Intended Purpose

The use of products outside the areas of application mentioned above or, inter alia, other than in the operating areas or environmental conditions described in the documentation is considered as non-intended purpose.

ADVICE

The following areas of application are, inter alia, those considered as non-intended purpose:

- Aerospace
- Areas at risk of explosion
- Machines specially constructed or used for a nuclear purpose whose breakdown might lead to the emission of radio-activity
- Vacuum
- Machines for domestic use
- Medical equipment which comes into direct contact with the human body
- Machines or equipment for transporting or lifting people
- Special devices for use in annual markets or leisure parks

2.4 Declaration of Conformity

Harmonic Drive ${ }^{\circledR}$ gears are components for installation in machines as defined by the machine directive 2006/42/EG
Commissioning is prohibited until such time as the end product has been proved to conform to the provisions of this directive.
Essential health and safety requirements were considered in the design and manufacture of these gear component sets. This simplifies the implementation of the machinery directive by the end user for the machinery or the partly completed machinery. Commissioning of the machine or partly completed machine is prohibited until the final product conforms to the EC Machinery Directive.

Small lightweight gearbox

CSF Series Cearboxes are available in five sizes with gear ratios of 30, 50, 80 and 100:1 offering repeatable peak torques from 0.09 to 28 Nm . The precision output bearing with high tilting rigidity enables the direct introduction of high payloads without further support and thus permits simple and space saving designs.

The CSF Series is available in numerous combinations: with a choice of input shaft or input hub, output shaft or output flange, or a broad or flat mounting flange.

The CSF Series is characterised by its very short length and low weight. Standard servo motors can be attached in a compact manner. Gearbox and motor together form a compact and lightweight system capable of withstanding high loads. Due to the positioning accuracy stable machine characteristics and short cycle times are guaranteed.

3.2 Ordering Code

Table 9.1

Series	Size	Ratio ${ }^{1)}$				Version	Special design
CSF	3B	30	50		100	$\begin{gathered} 1 \mathrm{U} \\ 1 \mathrm{U}-\mathrm{CC} \end{gathered}$	According to customer requirements
	5	30	50		100	1 U	
	8	30	50		100	$\begin{aligned} & 1 \mathrm{U}-\mathrm{CC} \\ & 2 \mathrm{XH}-\mathrm{J} \end{aligned}$	
	11	30	50		100	$\begin{gathered} 1 \mathrm{U}-\mathrm{F} \\ 1 \mathrm{U}-\mathrm{CC}-\mathrm{F} \end{gathered}$	
	14	30	50	80	100	2XH-F	

Ordering code

CSF

5
100
1U-CC-F

SP

${ }^{1)}$ The ratios shown here are for a standard driving configuration with the circular spline fixed, the Wave Generator used for the input and the Flexspline attached to the output. Other configurations are possible. Please consult chapter 4 "Ratio"

Table 9.2
Ordering code

3.3 Technical Data

3.3.1 Generaly Technical Data

Table 10.1

	Unit	CSF-3B-1U			CSF-3B-1U-CC		
Ratio	i []	30	50	100	30	50	100
Repeatable peak toque	T_{R} [Nm]	0.09	0.15	0.21	0.09	0.15	0.21
Average torque	$\mathrm{T}_{\mathrm{A}}[\mathrm{Nm}]$	0.07	0.09	0.16	0.07	0.09	0.16
Rated torque	$\mathrm{T}_{\mathrm{N}}[\mathrm{Nm}]$	0.04	0.08	0.11	0.04	0.08	0.11
Momentary peak torque	$\mathrm{T}_{\mathrm{M}}[\mathrm{Nm}]$	0.15	0.29	0.4	0.15	0.29	0.4
Maximum input speed (Grease lubrication)	$\mathrm{n}_{\text {in (max) }}[\mathrm{rpm}]$	10000			10000		
Average input speed (Grease lubrication)	$\mathrm{n}_{\mathrm{av}(\max)}[\mathrm{rpm}]$	6500			6500		
Moment of inertia	$J_{\text {in }}\left[\times 10^{-8} \mathrm{kgm}^{2}\right]$	0.0053			0.007		
Weight	m [g]	13.7			11.4		

Table 10.2

	Unit	CSF-5-1U			CSF-5-1U-CC		
Ratio	i []	30	50	100	30	50	100
Repeatable peak toque	T_{R} [Nm]	0.5	0.9	1.4	0.5	0.9	1.4
Average torque	$\mathrm{T}_{\mathrm{A}}[\mathrm{Nm}]$	0.38	0.43	0.94	0.38	0.43	0.94
Rated torque	$\mathrm{T}_{\mathrm{N}}[\mathrm{Nm}]$	0.25	0.40	0.60	0.25	0.40	0.60
Momentary peak torque	$\mathrm{T}_{\mathrm{M}}[\mathrm{Nm}]$	0.9	1.8	2.7	0.9	1.8	2.7
Maximum input speed (Grease lubrication)	$\mathrm{n}_{\text {in (max) }}[\mathrm{rpm}]$	10000			10000		
Average input speed (grease lubrication)	$\mathrm{n}_{\mathrm{av}(\text { max })}[\mathrm{rpm}]$	6500			6500		
Moment of inertia	$J_{\text {in }}\left[\times 10^{-4} \mathrm{kgm}^{2}\right]$	2.5			2.5		
Weight	m [g]	35			27		

Illustration 11.3

QUICKLINK
www.harmonicdrive.de/CAD2100

Table 12.1

	Unit	CSF-5-2XH-J			CSF-5-1U-F		
Ratio	i []	30	50	100	30	50	100
Repeatable peak toque	$\mathrm{T}_{\mathrm{R}}[\mathrm{Nm}]$	0.5	0.9	1.4	0.5	0.9	1.4
Average torque	T_{A} [Nm]	0.38	0.43	0.94	0.38	0.43	0.94
Rated torque	$\mathrm{T}_{\mathrm{N}}[\mathrm{Nm}]$	0.25	0.40	0.60	0.25	0.40	0.60
Momentary peak torque	$\mathrm{T}_{\mathrm{M}}[\mathrm{Nm}]$	0.9	1.8	2.7	0.9	1.8	2.7
Maximum input speed (grease lubrication)	$\mathrm{n}_{\text {in (max) }}[\mathrm{rpm}]$	10000			10000		
Average input speed (grease lubrication)	$\mathrm{n}_{\mathrm{av}(\mathrm{max})}[\mathrm{rpm}]$	6500			6500		
Moment of inertia	$\mathrm{J}_{\text {in }}\left[\times 10^{-4} \mathrm{kgm}^{2}\right]$	2.5			2.5		
Weight	m [g]	27			34		

Table 12.2

	Unit	CSF-5-1U-CC-F			CSF-5-2XH-F		
Ratio	i []	30	50	100	30	50	100
Repeatable peak toque	$\mathrm{T}_{\mathrm{R}}[\mathrm{Nm}]$	0.5	0.9	1.4	0.5	0.9	1.4
Average torque	$\mathrm{T}_{\mathrm{A}}[\mathrm{Nm}]$	0.38	0.43	0.94	0.38	0.53	0.94
Rated torque	$\mathrm{T}_{\mathrm{N}}[\mathrm{Nm}]$	0.25	0.40	0.60	0.25	0.40	0.60
Momentary peak torque	$\mathrm{T}_{\mathrm{M}}[\mathrm{Nm}]$	0.9	1.8	2.7	0.9	1.8	2.7
Maximum input speed (grease lubrication)	$\mathrm{n}_{\text {in (max) }}[\mathrm{rpm}]$	10000			10000		
Average input speed (grease lubrication)	$\mathrm{n}_{\text {av (max) }}[\mathrm{rpm}]$	6500			6500		
Moment of inertia	$J_{\text {in }}\left[\times 10^{-4} \mathrm{kgm}^{2}\right]$	2.5			2.5		
Weight	m [g]	25			25		

Illustration 13.3
CSF-5-1U-CC-F [mm]
Illustration 13.4
[SF-5-2XH-F [mm]

QUICKLINK
www.harmonicdrive.de/CAD2100

Table 14.1

	Unit	CSF-8-1U			CSF-8-1U-CC		
Ratio	i []	30	50	100	30	50	100
Repeatable peak toque	$\mathrm{T}_{\mathrm{R}}[\mathrm{Nm}]$	1.8	3.3	4.8	1.8	3.3	4.8
Average torque	T_{A} [Nm]	1.4	2.3	3.3	1.4	2.3	3.3
Rated torque	T_{N} [Nm]	0.90	1.8	2.4	0.90	1.8	2.4
Momentary peak torque	$\mathrm{T}_{\mathrm{M}}[\mathrm{Nm}]$	3.3	6.6	9.0	3.3	6.6	9.0
Maximum input speed (grease lubrication)	$\mathrm{n}_{\text {in (max) }}[\mathrm{rpm}]$	8500			8500		
Average input speed (grease lubrication)	$\mathrm{n}_{\mathrm{av}(\mathrm{max})}[\mathrm{rpm}]$	3500			3500		
Moment of inertia	$J_{\text {in }}\left[\times 10^{-4} \mathrm{kgm}^{2}\right]$	30			32		
Weight	m [g]	130			111		

Table 14.2

	Unit	CSF-8-2XH-J			CSF-8-1U-F		
Ratio	i []	30	50	100	30	50	100
Repeatable peak toque	$\mathrm{T}_{\mathrm{R}}[\mathrm{Nm}]$	1.8	3.3	4.8	1.8	3.3	4.8
Average torque	$\mathrm{T}_{\mathrm{A}}[\mathrm{Nm}]$	1.4	2.3	3.3	1.4	2.3	3.3
Rated torque	$\mathrm{T}_{\mathrm{N}}[\mathrm{Nm}]$	0.90	1.8	2.4	0.90	1.8	2.4
Momentary peak torque	$\mathrm{T}_{\mathrm{M}}[\mathrm{Nm}]$	3.3	6.6	9.0	3.3	6.6	9.0
Maximum input speed (grease lubrication)	$\mathrm{n}_{\text {in (max) }}[\mathrm{rpm}]$	8500			8500		
Average input speed (grease lubrication)	$\mathrm{n}_{\mathrm{av}(\mathrm{max})}[\mathrm{rpm}]$	3500			3500		
Moment of inertia	$J_{\text {in }}\left[\times 10^{-4} \mathrm{kgm}^{2}\right]$	32			30		
Weight	m [g]	111			120		

Table 16.1

	Unit	CSF-8-1U-CC-F			CSF-8-2XH-F		
Ratio	i []	30	50	100	30	50	100
Repeatable peak toque	$\mathrm{T}_{\mathrm{R}}[\mathrm{Nm}]$	1.8	3.3	4.8	1.8	3.3	4.8
Average torque	$\mathrm{T}_{\mathrm{A}}[\mathrm{Nm}]$	1.4	2.3	3.3	1.4	2.3	3.3
Rated torque	$\mathrm{T}_{\mathrm{N}}[\mathrm{Nm}]$	0.90	1.8	2.4	0.90	1.8	2.4
Momentary peak torque	$\mathrm{T}_{\mathrm{M}}[\mathrm{Nm}]$	3.3	6.6	9.0	3.3	6.6	9.0
Maximum input speed (grease lubrication)	$\mathrm{n}_{\text {in (max) }}[\mathrm{rpm}]$	8500			8500		
Average input speed (grease lubrication)	$\mathrm{n}_{\mathrm{av}(\mathrm{max})}[\mathrm{rpm}]$	3500			3500		
Moment of inertia	$J_{\text {in }}\left[\times 10^{-4} \mathrm{kgm}^{2}\right]$	32			32		
Weight	m [g]	100			100		

Table 16.2

	Unit	CSF-11-1U			CSF-11-1U-CC		
Ratio	i []	30	50	100	30	50	100
Repeatable peak toque	T_{R} [Nm]	4.5	8.3	11	4.5	8.3	11
Average torque	$\mathrm{T}_{\mathrm{A}}[\mathrm{Nm}]$	3.4	5.5	8.9	3.4	5.5	8.9
Rated torque	$\mathrm{T}_{\mathrm{N}}[\mathrm{Nm}]$	2.2	3.5	5.0	2.2	3.5	5.0
Momentary peak torque	$\mathrm{T}_{\mathrm{M}}[\mathrm{Nm}]$	8.5	17	25	8.5	17	25
Maximum input speed (grease lubrication)	$\mathrm{n}_{\text {in (max) }}[\mathrm{rpm}]$	8500			8500		
Average input speed (grease lubrication)	$\mathrm{n}_{\text {av (max) }}[\mathrm{rpm}]$	3500			3500		
Moment of inertia	$J_{\text {in }}\left[\times 10^{-4} \mathrm{kgm}^{2}\right]$	120			140		
Weight	m [g]	240			176		

Table 18.1

	Unit	CSF-11-2XH-J			CSF-11-1U-F		
Ratio	i []	30	50	100	30	50	100
Repeatable peak toque	T_{R} [Nm]	4.5	8.3	11	4.5	8.3	11
Average torque	$\mathrm{T}_{\mathrm{A}}[\mathrm{Nm}]$	3.4	5.5	8.9	3.4	5.5	8.9
Rated torque	$\mathrm{T}_{\mathrm{N}}[\mathrm{Nm}]$	2.2	3.5	5.0	2.2	3.5	5.0
Momentary peak torque	$\mathrm{T}_{\mathrm{M}}[\mathrm{Nm}]$	8.5	17	25	8.5	17	25
Maximum input speed (grease lubrication)	$\mathrm{n}_{\text {in (max) }}[\mathrm{rpm}]$	8500			8500		
Average input speed (grease lubrication)	$\mathrm{n}_{\text {av (max) }}[\mathrm{rpm}]$	3500			3500		
Moment of inertia	$J_{\text {in }}\left[\times 10^{-4} \mathrm{kgm}^{2}\right]$	140			120		
Weight	m [g]	176			220		

Table 18.2

	Unit	CSF-11-1U-CC-F			CSF-11-2XH-F		
Ratio	i []	30	50	100	30	50	100
Repeatable peak toque	$\mathrm{T}_{\mathrm{R}}[\mathrm{Nm}]$	4.5	8.3	11	4.5	8.3	11
Average torque	T_{A} [Nm]	3.4	5.5	8.9	3.4	5.5	8.9
Rated torque	$\mathrm{T}_{\mathrm{N}}[\mathrm{Nm}]$	2.2	3.5	5.0	2.2	3.5	5.0
Momentary peak torque	$\mathrm{T}_{\mathrm{M}}[\mathrm{Nm}]$	8.5	17	25	8.5	17	25
Maximum input speed (grease lubrication)	$\mathrm{n}_{\text {in (max) }}[\mathrm{rpm}]$	8500			8500		
Average input speed (grease lubrication)	$\mathrm{n}_{\mathrm{av}(\max)}[\mathrm{rpm}]$	3500			3500		
Moment of inertia	$J_{\text {in }}\left[\times 10^{-4} \mathrm{kgm}^{2}\right]$	140			140		
Weight	m [g]	150			295		

Illustration 19.3

Table 20.1

	Unit	CSF-14-1U				CSF-14-1U-CC			
Ratio	i []	30	50	80	100	30	50	80	100
Repeatable peak toque	T_{R} [Nm]	9.0	18	23	28	9.0	18	23	28
Average torque	$\mathrm{T}_{\mathrm{A}}[\mathrm{Nm}]$	6.8	6.9	11	11	6.8	6.9	11	11
Rated torque	$\mathrm{T}_{\mathrm{N}}[\mathrm{Nm}]$	4.0	5.4	7.8	7.8	4.0	5.4	7.8	7.8
Momentary peak torque	$\mathrm{T}_{\mathrm{M}}[\mathrm{Nm}]$	17	35	47	54	17	35	47	54
Maximum input speed (grease lubrication)	$\mathrm{n}_{\text {in (max) }}[\mathrm{rpm}]$	8500				8500			
Average input speed (grease lubrication)	$\mathrm{n}_{\mathrm{av}(\mathrm{max})}[\mathrm{rpm}]$	3500				3500			
Moment of inertia	$J_{\text {in }}\left[\times 10^{-4} \mathrm{kgm}^{2}\right]$	330				340			
Weight	m [g]	440				335			

Table 20.2

	Unit	CSF-14-2XH-J				CSF-14-1U-F			
Ratio	i []	30	50	80	100	30	50	80	100
Repeatable peak toque	$\mathrm{T}_{\mathrm{R}}[\mathrm{Nm}]$	9.0	18	23	28	9.0	18	23	28
Average torque	$\mathrm{T}_{\mathrm{A}}[\mathrm{Nm}]$	6.8	6.9	11	11	6.8	6.9	11	11
Rated torque	$\mathrm{T}_{\mathrm{N}}[\mathrm{Nm}]$	4.0	5.4	7.8	7.8	4.0	5.4	7.8	7.8
Momentary peak torque	$\mathrm{T}_{\mathrm{M}}[\mathrm{Nm}]$	17	35	47	54	17	35	47	54
Maximum input speed (grease lubrication)	$\mathrm{n}_{\text {in (max) }}[\mathrm{rpm}]$	8500				8500			
Average input speed (grease lubrication)	$\mathrm{n}_{\mathrm{av}(\mathrm{max})}[\mathrm{rpm}]$	3500				3500			
Moment of inertia	$J_{\text {in }}\left[\times 10^{-4} \mathrm{kgm}^{2}\right]$	340				330			
Weight	m [g]	295				405			

Table 22.1

	Unit	CSF-14-1U-CC-F				CSF-14-2XH-F			
Ratio	i []	30	50	80	100	30	50	80	100
Repeatable peak toque	$\mathrm{T}_{\mathrm{R}}[\mathrm{Nm}]$	9.0	18	23	28	9.0	18	23	28
Average torque	T_{A} [Nm]	6.8	6.9	11	11	6.8	6.9	11	11
Rated torque	$\mathrm{T}_{\mathrm{N}}[\mathrm{Nm}]$	4.0	5.4	7.8	7.8	4.0	5.4	7.8	7.8
Momentary peak torque	$\mathrm{T}_{\mathrm{M}}[\mathrm{Nm}]$	17	35	47	54	17	35	47	54
Maximum input speed (grease lubrication)	$\mathrm{n}_{\text {in (max) }}[\mathrm{rpm}]$	8500				8500			
Average input speed (grease lubrication)	$\mathrm{n}_{\mathrm{av}(\max)}[\mathrm{rpm}]$	3500				3500			
Moment of inertia	$J_{\text {in }}\left[\times 10^{-4} \mathrm{kgm}^{2}\right]$	340				340			
Weight	m [g]	295				295			

3.3.3 Accuracy

Table 23.1
[arcmin]

Size	3B		5		8		11		14	
Ratio	30	≥ 50								
Transmission accuracy	<10		<4	<3			<2	<1,5	<2	<1,5
Hystereseverlust	<4,5	<4	<3		<3	<2	<3	<2	<3	<1
Lost Motion	<1,5				<1					
Repeatability	$< \pm 1,17$		$< \pm 0,17$		$< \pm 0,1$					

3.3.4 Torsional Stiffness

Table 23.2
[arcmin]

Size		3B	5		8		11		14	
Version		$\begin{gathered} 1 \mathrm{U} \\ 1 \mathrm{C}-\mathrm{CC} \end{gathered}$	$\begin{gathered} 1 \mathrm{U} \\ 1 \mathrm{U}-\mathrm{CC} \\ 2 \mathrm{XH}-\mathrm{J} \end{gathered}$		$\begin{gathered} 1 \mathrm{U} \\ 1 \mathrm{U}-\mathrm{CC} \\ 2 \mathrm{XH}-\mathrm{J} \end{gathered}$	1U-F 1U-CC-F 2XH-F	$\begin{gathered} \hline 1 \mathrm{U} \\ 1 \mathrm{C}-\mathrm{CC} \\ 2 \mathrm{XH}-\mathrm{J} \\ \hline \end{gathered}$	1U-F 1U-CC-F 2XH-F	$\begin{gathered} 1 \mathrm{U} \\ 1 \mathrm{U}-\mathrm{CC} \\ 2 \mathrm{XH}-\mathrm{J} \end{gathered}$	1U-F 1U-CC-F 2XH-F
$\mathrm{T}_{1}[\mathrm{Nm}]$		0.016	0.075		0.29		0.8		2	
$\mathrm{T}_{2}[\mathrm{Nm}]$		0.05	0.22		0.75		2		6.9	
$i=30$	$\mathrm{K}_{3}[\mathrm{Nm} / \mathrm{rad}]$	51	120	160	460	540	1340	1580	2860	3350
	$\mathrm{K}_{2}[\mathrm{Nm} / \mathrm{rad}]$	40	110	130	390	440	1090	1240	2100	2350
	$\mathrm{K}_{1}[\mathrm{Nm} / \mathrm{rad}]$	27	90	100	310	340	770	840	1720	1880
$i=50$	$\mathrm{K}_{3}[\mathrm{Nm} / \mathrm{rad}]$	57	170	250	670	840	2360	3200	4400	5680
	$\mathrm{K}_{2}[\mathrm{Nm} / \mathrm{rad}]$	47	140	180	560	670	2250	3000	3780	4680
	$\mathrm{K}_{1}[\mathrm{Nm} / \mathrm{rad}]$	30	110	130	390	440	1770	2210	2860	3350
$i \geq 80$	$\mathrm{K}_{3}[\mathrm{Nm} / \mathrm{rad}]$	67	200	300	890	1200	2910	4320	5160	7000
	K_{2} [$\mathrm{Nm} / \mathrm{rad}$]	54	180	270	800	1040	2430	3330	4600	6010
	$\mathrm{K}_{1}[\mathrm{Nm} / \mathrm{rad}]$	34	150	200	720	900	2060	2670	3780	4680

3.3.5 Bearings

Output Bearings

CSF Units units incorporate a high stiffness cross roller or four-point bearing to support output loads. This specially developed bearing can withstand high axial and radial forces as well as high tilting moments. The reduction gear is thus protected from external loads, so guaranteeing a long life and constant performance. The integration of an output bearing also serves to reduce design and production costs, by removing the need for additional output bearings in many applications.

However, in some applications the machine element to be driven requires additional bearing support. In this case, please take care to avoid overdetermination of the bearing arrangement. The cross roller bearing of the unit should be used as the fixed bearing, whilst the additional support bearing should be floating, if possible. Table 24.1 lists ratings and important dimensions for the output bearings.

Table 24.1

Size		3B	5	8	11	14
Bearing type ${ }^{1)}$		F	F	F	F	F
Pitch circle ø	d_{p} [mm]	7.7	13.5	20.5	27.5	35
Offset ${ }^{2)}$	R [mm]	4.1	4.85	7.3	9	11.4
Dynamic load rating	C [N]	665	914	2160	3890	6120
Static load rating	$C_{0}[\mathrm{~N}]$	424	7630	1900	3540	5850
Permissible dynamic tilting moment ${ }^{3)}$	M [Nm]	0.27	0.89	3.46	6.6	13.2
Tilting moment stiffness ${ }^{6)}$	K_{B} [Nm/arcmin]	0.026	0.22	0.8	2.16	3.9
Permissible axial load ${ }^{5)}$	F_{a} [N$]$	130	270	630	1150	1800
Permissible radial load ${ }^{5)}$	F_{r} [N$]$	36	90	200	300	550

Normally, the gear life is determined by the life of the Wave Generator bearing. Depending on the specific load conditions the output bearing can also be determinant for the unit life

1) $F=$ Four-point bearing, $C=$ Cross roller bearing
2) See illustration 25.1
3) These values are valid for moving gears. They are not based on the equation for lifetime calculation of the output bearing but on the maximum allowable deflection of the Harmonic Drive ${ }^{\oplus}$ component set
The values indicated in the table must not be exceeded even if the lifetime equation of the bearing permits higher values.
4) These values are valid for gears at a standstill and for a static load safety factor $f_{s}=1.8$ for \# 14-20 and 1,5 for \# 25-58. For other values of f_{s}, please refer to section 4.6 .
5) These data are valid for $n=15 \mathrm{rpm}$ and $\mathrm{L}_{10}=15000 \mathrm{~h}$
6) 4) 5) These data are only valid if the following conditions are fulfilled: For: $M, M_{0}: F_{a}=0, F_{r}=0\left|F_{a}: M=0 ; F_{r}=0\right| F_{r}: M=0, F_{a}=0$
1) Average value

Input Bearing CSF-Mini

The input shaft of the CSF-Mini Gearbox is supported by two single row deep groove ball bearings. Illustration 25.1 shows the points of application of force of the radial and axial loads given in table 24.2 and illustration 25.2.

Example: If the input shaft of a CSF-14 Cearbox is subjected to an axial load of 7.5 N , then the maximum permissible radial force will be 20.6 N .

The technical data given on this page are valid for an average input speed of 2000 rpm and a mean bearing life of $L_{50}=35000 \mathrm{~h}$.

Table 24.2

Size		$\mathbf{3 B}$	$\mathbf{5}$	$\mathbf{8}$	$\mathbf{1 1}$	$\mathbf{1 4}$
Offset Max. permissible radial load $\mathrm{Fr}[\mathrm{N}]$	5.85	9.3	18	21.9	24.3	

Output Bearing and Housing Tolerances

Illustration 25.3

Illustration 25.4

Table 25.5
[mm]

Size	3B	5		8		11		14	
Version	$\stackrel{10}{10-c c}$	$\begin{gathered} 1 \mathrm{U} \\ \text { 1U-CC } \\ 2 \mathrm{XH}-\mathrm{J} \end{gathered}$	$\begin{gathered} 1 U-F \\ 1 U-C C-F \end{gathered}$ 2XH-F	$\begin{gathered} \text { 1U } \\ \text { 1U-CC } \\ 2 \times H-J \end{gathered}$	1U-F 1U-CC-F 2XH-F	$\begin{gathered} 1 \mathrm{U} \\ 1 \mathrm{U}-\mathrm{CC} \\ 2 \mathrm{XH}-\mathrm{J} \end{gathered}$	1U-F 1U-CC-F 2XH-F	$\begin{gathered} \text { 1U } \\ \text { 1U-CC } \\ 2 \times H-J \end{gathered}$	1U-F 1U-CC-F 2XH-F
a	0.030	0.030	0.005	0.030	0.005	0.030	0.005	0.030	0.005
b	0.020	0.040	0.040	0.040	0.040	0.055	0.055	0.055	0.055
c	0.020	0.020	0.020	0.020	0.020	0.025	0.025	0.025	0.025
d	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
e	0.015	0.015	0.015	0.020	0.020	0.030	0.030	0.030	0.030

3.3.6 Materials Used

Materials:
Housing: Aluminium.
Adapter flange, if supplied by Harmonic Drive AG.
High-tensile aluminium (or steel)
Surfaces:
Screws: Corrosion protected or stainless steel.
Shafts: Steel.

4. Driving Arrangements

A variety of different driving arrangements are possible with Harmonic Drive ${ }^{\oplus}$ gears.

Equation 26.1
Ratio $i=\quad \frac{\text { Input speed }}{\text { Output speed }}$

Overview Harmonic Drive ${ }^{\circledR}$ Products

The three main components of the Harmonic Drive ${ }^{\oplus}$ units, Circular Spline (CS), Flexspline (FS) and Wave Generator (WG) can be seen in the illustration 26.2.

Illustration 26.2

The values for ratios of Harmonic Drive ${ }^{\oplus}$ gears refer to the standard input and output arrangement (example 1 in the table below). Other arrangements are possible, and also shown in the table.

Reduction gearing		
FS	Fixed	
WG	Input	
CS	Output	

Equation 27.2

Input and output rotate in opposite directions.

Speed increaser gearing

WG	Fixed
CS	Input
FS	Output

Equation 27.4

Input and output rotate in same direction.

Speed increaser gearing	
CS	Fixed
FS	Input
WG	Output

Equation 27.5

Input and output rotate in opposite directions.

Reduction gearing

WG	Fixed
FS	Input
CS	Output

Equation 27.3

$$
\text { Ratio }=\frac{i+1}{1}
$$

Input and output rotate in same direction.
6)

Speed increaser gearing
FS Fixed
CS Input
WG Output

Equation 27.6

$$
\text { Ratio }=\frac{1}{i+1}
$$

Input and output rotate in same direction.

Differential gear

WG	Control input
CS	Main drive input
FS	Main drive output

CS Main drive input
FS Main drive output

Numerous differential functions can be obtained by combinations of the speed and rotational direction of the three basic elements. Please refer to our broshure "Differential Applications" available to download from our website.

4.1 Selecting Harmonic Drive ${ }^{\circledR}$ Gears

When choosing a gear, both torque as well as stiffness requirements should be take into account. In robot applications, for example, the necessary torque is the more crucial factor for the gear size, while the torsional stiffness is often decisive in machine tool applications. We therefore recommend that you always take both criteria into account according to the following procedures.

4.1.1 Torque Based Dimensioning

Output Data

Equation 29.2
Load limit 1,
Calculation of the average output torque $T_{a v}$

Equation 29.3

| Values for T_{A} see rating tables |
| :---: | :---: |
| $T_{\text {av }} \leq T_{A}$ |\quad No | Selection of a bigger size |
| :---: |

Equation 29.4
Calculation of the average output speed

$$
n_{\text {out av }}=\frac{\left|n_{1}\right| \cdot t_{1}+\left|n_{2}\right| \cdot t_{2}+\ldots+\left|n_{n}\right| \cdot t_{n}}{t_{1}+t_{2}+\ldots+t_{n}+t_{p}}
$$

Equation 29.6

Permissible maximum input speed
$\mathrm{n}_{\text {in } \max }=\mathrm{n}_{\text {out } \max } \cdot \mathrm{i} \leq$ Maximum input speed (see rating table)

Permissible maximum input speed
$n_{\text {in } \max }=n_{\text {out } \max } \cdot \mathrm{i} \leq$ Maximum input speed (see rating table)

Equation 29.8
Load limit 2, T_{R}
$\mathrm{T}_{\text {max }} \leq \mathrm{T}_{\mathrm{R}}$
Equation 29.11

Values for L_{n} see table 31.1

| $\mathrm{T}_{1}=400 \mathrm{Nm}$ | $\mathrm{t}_{1}=0.3 \mathrm{~s}$ | $\mathrm{n}_{1}=7 \mathrm{rpm}$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{T}_{2}=320 \mathrm{Nm}$ | $\mathrm{t}_{2}=3.0 \mathrm{~s}$ | $\mathrm{n}_{2}=14 \mathrm{rpm}$ |
| $\mathrm{T}_{3}=200 \mathrm{Nm}$ | $\mathrm{t}_{3}=0.4 \mathrm{~s}$ | $\mathrm{n}_{3}=7 \mathrm{rpm}$ |
| $\mathrm{T}_{\mathrm{k}}=500 \mathrm{Nm}$ | $\mathrm{t}_{\mathrm{k}}=0.15 \mathrm{~s}$ | $\mathrm{n}_{\mathrm{k}}=14 \mathrm{rpm}$ |
| | $\mathrm{t}_{\mathrm{p}}=0.2 \mathrm{~s}$ | $\mathrm{n}_{\mathrm{p}}=0 \mathrm{rpm}$ |
| | | |
| Ratio $\mathrm{i}=120$ | | |
| Life $\mathrm{L}_{50}=30000 \mathrm{~h}$ (required) | | |

4.1.2 Life of the Wave Generator Bearing

Given that the Harmonic Drive ${ }^{\oplus}$ Gear is rated to provide infinite fatigue life for the Flexspline, the life expectancy is based on the average life of the Wave Generator bearing. The rated torque at the rated speed given in the rating table is based on the mean L_{50} bearing life. The life expectancy of a component set or an unit operating at an input speed n (rpm) and output torque $\mathrm{T}(\mathrm{Nm})$ may be estimated from equation 31.2.

Table 31.1

Harmonic Drive ${ }^{\oplus}$ series	$\mathbf{L}_{\boldsymbol{n}}$
CobaltLine, CSG, SHG	50000
HFUC, HFUS, CSD, CPU, CSF, SHD	35000
PMG gearbox	15000

Equation 31.2

$$
L_{50}=L_{n} \frac{n_{N}}{n_{\text {in av }}}\left(\frac{T_{N}}{T_{\text {av }}}\right)^{3}
$$

Equation 31.3

$$
\mathrm{L}_{10} \approx \frac{1}{5} \cdot \mathrm{~L}_{50}
$$

$\mathrm{n}_{\mathrm{N}}=$ Rated input speed [rpm]
$\mathrm{n}_{\text {in av }}=$ Average input speed [rpm] (equation 29.5)
$\mathrm{T}_{\mathrm{N}}=$ Rated output torque at rated speed [Nm]
$\mathrm{T}_{\mathrm{av}}=$ Average output torque [Nm] (equation 29.2)
$L_{n}=$ See table 31.1

4.1.3 Stiffness Based Dimensioning

In addition to the "Torque Based Dimensioning" stated on page 29, we recommend that you carry out a selection based on stiffness. For this, the values provided in table 32.1 for the individual resonance frequencies recommended for each application should be taken into account.

Table 32.1

Application	f_{n}
Slowly rotating turntables, base axes of slow moving welding robots (not laser welding), slowly rotating welding and swinging tables, gantry robot axes	≥ 4
Base axes of revolute robots, hand axes of revolute robots with low requirements regarding dynamic perfomance, tool revolvers, tool magazines, swivelling and positioning axes in medical and measuring devices	≥ 8
Standard applications in general mechanical engineering, tilting axes, palette changers, highly dynamic tool changers, revolvers and magazines, hand axes of robots, scara robots, gantry robots, polishing robots, dynamic welding manipuators, base axes of welding robots (laser welding), swivelling and positioning axes of medical equipment	≥ 15
B / C axes in 5 axis grinding machines, hand axes of welding robots (laser welding), milling heads for plastics machining	≥ 20
〔 axes in turning machines, milling heads for light metal machining, milling heads for woodworking (chipboards etc.)	≥ 25
Milling heads for woodworking (hardwood etc.)	≥ 30
¢ axes in turning machines*	≥ 35
Milling heads for metal machining*, B axes in turning milling centers for metal machining	≥ 40
Milling heads for metal machining*, B axes in turning milling centers for metal machining with high requirements regarding surface quality*	≥ 50
Milling heads for metal machining with very high requirements regarding surface quality*	≥ 60

* Depending on the application, a secondary gear stage may be useful. Please contact Harmonic Drive AG for more information..

Resonance Frequency (Gear Output)

The formula

Equation 33.1

$$
f_{n}=\frac{1}{2 \pi} \sqrt{\frac{K_{1}}{\jmath}}[\mathrm{~Hz}]
$$

$\mathrm{fn}=$ Resonance frequency [Hz]
K1 = Gear torsional stiffness K1 [$\mathrm{Nm} / \mathrm{rad}$]
$\mathrm{J}=$ Load moment of inertia [kgm²]
allows the calculation of the resonance frequency at the gear output from the given torsional stiffness, K1, of the Harmonic Drive ${ }^{\ominus}$ gear and the load's moment of inertia. The calculated frequency should correspond with the value provided in table 32.1. The higher the load's moment of inertia, the more influence the application has on the gear selection. If the moment of inertia $=0$, the selected application has no numerical influence on the selection result.

Resonance Speed (Gear Input)

The resonance speed nn on the input side (motor side) can be calculated using the formula
$\mathrm{n}_{\mathrm{n}}=\mathrm{f}_{\mathrm{n}}{ }^{*} 30[\mathrm{rpm}]$
During operation, we recommend that you pass the resonance speed rapidly. This can be achieved by selecting a suitable gear ratio. Another possibility is to select suitable gear stiffness such that the resonance speed lies beyond the required speed range.

Selection Example

HFUC-40-120-2A-GR preselected from "Selection Procedure" on page 30.
Intended application: milling head for woodworking
Moment of inertia at the gear output: $7 \mathrm{kgm}^{2}$. Recommended resonance frequency from table $32.1: \geq 30 \mathrm{~Hz}$.
Resonance frequency using the preselected gear
HFUC-40-120-2A-GR:

$$
\mathrm{f}_{\mathrm{n}}=\frac{1}{2 \pi} \cdot \sqrt{\frac{1.3 \cdot 10^{5}}{7}}=22[\mathrm{~Hz}]
$$

According to stiffness based dimensioning, this gear size is too small for the application.
The larger gear HFUC-50-120-2A-GR results in a resonance frequency of:

$$
\mathrm{f}_{\mathrm{n}}=\frac{1}{2 \pi} \cdot \sqrt{\frac{2.5 \cdot 10^{5}}{7}}=30[\mathrm{~Hz}]
$$

Based on stiffness based dimensioning, the gear HFUC-50-120-2A-GR is recommended.
The resonance speed at the input (motor) amounts to:
$\mathrm{n}_{\mathrm{n}}=30 * 30=900[\mathrm{rpm}]$
Either, this speed should be passed without stopping when accelerating / braking, or it should lie beyond the utilised speed range.

4.2 Calculation of the Torsion Angle

Calculation of the Torsion Angle φ at Torque T:

Equation 34.1
$T \leq T_{1}$
$\varphi=\frac{T}{K_{1}}$

Equation 34.2

$$
\begin{gathered}
\mathrm{T}_{1}<\mathrm{T} \leq \mathrm{T}_{2} \\
\varphi=\frac{\mathrm{T}_{1}}{\mathrm{~K}_{1}}+\frac{\mathrm{T}-\mathrm{T}_{1}}{\mathrm{~K}_{2}}
\end{gathered}
$$

Equation 34.3

$$
\begin{gathered}
T>T_{2} \\
\varphi=\frac{T_{1}}{\mathrm{~K}_{1}}+\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~K}_{2}}+\frac{\mathrm{T}-\mathrm{T}_{2}}{\mathrm{~K}_{3}}
\end{gathered}
$$

$\varphi=$ Angle [rad]
$\mathrm{T}=$ Torque [Nm]
$\mathrm{K}=$ Stiffness [$\mathrm{Nm} / \mathrm{rad}$]
Example: HFUC-32-100-2UH
$\mathrm{T}=60 \mathrm{Nm} \quad \mathrm{K}_{1}=6.7 \cdot 10^{4} \mathrm{Nm} / \mathrm{rad}$
$\mathrm{T}_{1}=29 \mathrm{Nm} \quad \mathrm{K}_{2}=1.1 \cdot 10^{5} \mathrm{Nm} / \mathrm{rad}$
$\mathrm{T}_{2}=108 \mathrm{Nm} \quad \mathrm{K}_{3}=1.2 \cdot 10^{5} \mathrm{Nm} / \mathrm{rad}$

$$
\begin{aligned}
& \varphi=\frac{29 \mathrm{Nm}}{6.7 \cdot 10^{4} \mathrm{Nm} / \mathrm{rad}}+\frac{60 \mathrm{Nm}-29 \mathrm{Nm}}{11 \cdot 10^{4} \mathrm{Nm} / \mathrm{rad}} \\
& \varphi=7.15 \cdot 10^{-4} \mathrm{rad} \\
& \varphi=2.5 \mathrm{arc} \mathrm{~min}
\end{aligned}
$$

Equation 34.4
$\varphi[\operatorname{arcmin}]=\varphi[\mathrm{rad}] \cdot \frac{180 \cdot 60}{\pi}$

4.3 Efficiency Versus Load

Efficiency for Harmonic Drive ${ }^{\circledR}$ gears varies depending on the output torque. The efficiency curves are for gears operating at rated output torque. Efficiency for a gear operating at a load below the rated torque may be estimated using a compensation curve and equation as shown on these pages.

4.3.1 Efficiency Calculations

Table 35.1

Calculating Factor K

Illustration 35.4

K

4.3.2 Efficiency Tables

Efficiency for Harmonic Drive gears varies depending on the output torque. The efficiency curves are for gears operating at rated output torque. Efficiency for a gear operating at a load below the rated torque may be estimated using a compensation curve and equation as shown on page 35 .

CSF-3B all Types
Illustration 36.1

Ratio $=100$

CSF-5 all Types
Illustration 36.2

CSF-8-1U, -1U-F

Illustration 37.1

CSF-8-1U-CC, -2XH-J, -1U-CC-F, 2XH-F

Illustration 37.2

CSF-11-1U, -1U-F

Illustration 38.1

Ratio $=50$

Ratio $=100$

CSF-11-1U-CC, -2XH-J, -1U-CC-F, 2XH-F

Illustration 38.2

CSF-14-1U, -1U-F

Illustration 39.1

Ratio $=50$

CSF-14-1U-CC, -2XH-5, -1U-CC-F, -2XH-F

Illustration 39.2

4.4 No Load Running Torque

No Load Running Torque

The no load running torque is the torque required to maintain rotation of the input element (high speed side) at a defined input speed with no load applied to the output.

The following curves are valid for: Harmonic Drive ${ }^{\circledR}$ grease, standard lubricant quantity
Gear ratio i = 100
For other ratios please apply the compensation values below.
For oil lubrication please contact Harmonic Drive AG.

4.4.1 No Load Running Torque

No load running torque CSF-3B-1U-CC
Illustration 40.1

No load running torque CSF-5~14-1U / -1U-F
Illustration 40.2

No load running torque CSF-5~14-1U / -1U-F

Illustration 41.1

No load running torque CSF-5~14-1U-CC, -2XH-J, -1U-CC-F, -2XH-F

Illustration 41.2

Compensation Values for No Load Running Torque
Table 41.3 [mm]

Ratio	Size					
	3B		5	8	11	14
	1 U	1U-CC				
30	0,026	0,020	0,26	0,44	0,81	1,33
50	0,023	0,017	0,11	0,19	0,36	0,58
80	-	-	-	-	-	0,1

4.5 Output Bearing Operating Life

The operating life of the output bearing can be calculated using equation 42.1.

Equation 42.1

$$
L_{10}=\frac{10^{6}}{60 \cdot n_{a v}} \cdot\left(\frac{c}{f_{w} \cdot P_{c}}\right)^{B}
$$

with:
$\mathrm{L}_{10}[\mathrm{~h}]=$ Operating life
$\mathrm{n}_{\mathrm{av}}[\mathrm{rpm}]=$ Average output speed (equation 42.2)
$\mathrm{C}[\mathrm{N}]=$ Dynamic load rating (table 24.1)
$P_{c}[\mathrm{~N}]=$ Dynamic equivalent load (equation 43.1)
$\mathrm{f}_{\mathrm{w}} \quad=$ Operating factor (table 42.3)
$B \quad=$ Bearing type (table 42.4)

Average Output Speed

Equation 42.2

$$
\mathrm{n}_{\mathrm{av}}=\frac{\left|\mathrm{n}_{1}\right| \mathrm{t}_{1}+\left|\mathrm{n}_{2}\right| \mathrm{t}_{2}+\ldots+\left|\mathrm{n}_{\mathrm{n}}\right| \mathrm{t}_{\mathrm{n}}}{\mathrm{t}_{1}+\mathrm{t}_{2}+\ldots+\mathrm{t}_{\mathrm{n}}+\mathrm{t}_{\mathrm{p}}}
$$

Table 42.3

Load conditions	$\mathbf{f}_{\mathbf{w}}$
No impact loads or vibrations	$1 \ldots 1.2$
Normal rotating. normal loads	$1.2 \ldots 1.5$
Impact loads and/or vibrations	$1.5 \ldots 3$

Table 42.4

Bearing type	B
Cross roller bearings	$10 / 3$
Four point contact bearings	3

Dynamic Equivalent Load

Equation 43.1

$$
P_{c}=x \cdot\left(F_{r a v}+\frac{2 M}{d_{p}}\right)+y \cdot F_{\text {aav }}
$$

with:
$\mathrm{F}_{\text {rav }}[\mathrm{N}]=$ Radial force (equation 43.2) $\mathrm{x}=$ Radial load factor (table 43.4)
$\mathrm{F}_{\text {aav }}[\mathrm{N}]=$ Axial force (equation 43.3) $\quad \mathrm{y}=$ Axial load factor (table 43.4)
$\mathrm{d}_{\mathrm{p}}[\mathrm{m}]=$ Pitch circle (table 24.1) $\mathrm{M}=$ Tilting moment (table 24.1)

Equation 43.2

$$
F_{\mathrm{rav}}=\left(\frac{\left|\mathrm{n}_{1}\right| \cdot \mathrm{t}_{1} \cdot\left(\left|\mathrm{~F}_{\mathrm{r}}\right|\right)^{\mathrm{B}}+\left|\mathrm{n}_{2}\right| \cdot \mathrm{t}_{2} \cdot\left(\left|\mathrm{~F}_{\mathrm{r}}\right|\right)^{\mathrm{B}}+\ldots+\left|\mathrm{n}_{\mathrm{n}}\right| \cdot \mathrm{t}_{\mathrm{n}} \cdot\left(\left|\mathrm{~F}_{\mathrm{r} \mid}\right|\right)^{\mathrm{B}}}{\left|\mathrm{n}_{1}\right| \cdot \mathrm{t}_{1}+\left|\mathrm{n}_{2}\right| \cdot \mathrm{t}_{2}+\ldots+\left|\mathrm{n}_{\mathrm{n}}\right| \cdot \mathrm{t}_{\mathrm{n}}}\right)^{1 / \mathrm{B}}
$$

Equation 43.3

$$
F_{\text {aav }}=\left(\frac{\left|\mathrm{n}_{1}\right| \cdot \mathrm{t}_{1} \cdot\left(\left|\mathrm{~F}_{\mathrm{az}}\right|\right)^{\mathrm{B}}+\left|\mathrm{n}_{2}\right| \cdot \mathrm{t}_{2} \cdot\left(\left|\mathrm{~F}_{\mathrm{a} 2}\right|\right)^{\mathrm{B}}+\ldots+\left|\mathrm{n}_{\mathrm{n}}\right| \cdot \mathrm{t}_{\mathrm{n}} \cdot\left(\left|\mathrm{~F}_{\mathrm{an}}\right|\right)^{\mathrm{B}}}{\left|\mathrm{n}_{1}\right| \cdot \mathrm{t}_{1}+\left|\mathrm{n}_{2}\right| \cdot \mathrm{t}_{2}+\ldots+\left|\mathrm{n}_{\mathrm{n}}\right| \cdot \mathrm{t}_{\mathrm{n}}}\right)^{1 / \mathrm{B}}
$$

Table 43.4

Load factors	\mathbf{x}	\mathbf{y}
$\frac{F_{\text {aav }}}{F_{\text {rav }}+2 \cdot M / d_{p}} \leq 1.5$	1	0.45
$\frac{F_{\text {aav }}}{F_{\text {rav }}+2 \cdot M / d_{p}}>1.5$	0.67	0.67

Illustration 43.5

Please note:
$F_{\alpha}=$ represents the maximum radial force
$F_{a x}=$ represents the maximum axial force
$\mathrm{t}_{\mathrm{p}}=$ represents the pause time between cycles.

4.5.1 Output Bearing at Oscillating Motion

Life for Oscillating Motion

The operating life at oscillating motion can be calculated using equation 44.1

Equation 44.1

$$
L_{o c}=\frac{10^{6}}{60 \cdot n_{1}} \cdot \frac{180}{\varphi} \cdot\left(\frac{C}{f_{w} \cdot P_{c}}\right)^{B}
$$

```
with
    \(\mathrm{L}_{\mathrm{oc}}[\mathrm{h}]=\) Operating life for oscillating motion
    \(n_{1}[\mathrm{cpm}]=\) Number of oscillations/minute*
    C \([\mathrm{N}]=\) Dynamic load rating (table 24.1)
    \(P_{c}[N]=\) Dynamic equivalent load (equation 43.1)
    \(\varphi\) [deg] = Oscillating angle
    \(\mathrm{f}_{\mathrm{w}} \quad=\) Operating factor (table 42.3)
```

* one oscillation means 2φ

Oscillating angle

At oscillating angles < 5° fretting corrosion may occur due to insufficient lubrication. In this case please contact our sales engineer for counter measures.

4.6 Permissible Static Tilting Moment

In case of static load, the bearing load capacity can be determined as follows:

Equation 45.1

$$
f_{S}=\frac{C_{0}}{P_{0}} \text { mit } \quad P_{0}=x_{0}\left(F_{r}+\frac{2 M}{d_{p}}\right)+y_{0} \cdot F_{a}
$$

and so
Equation 45.2

$$
M_{0}=\frac{d_{p} \cdot C_{0}}{2 \cdot f_{5}}
$$

$\mathrm{f}_{5}=$ Static load safety factor

$$
\left(\mathrm{f}_{\mathrm{s}}=1.5 \ldots\right. \text {... 3) (table 45.3) }
$$

$C_{0}=$ Static load rating (table 24.1)
$F_{r}=F_{a}=0$
$x_{0}=1$
$y_{0}=0.44$
$P_{0}=$ Static equivalent load (equation 45.1)
$d_{p}=$ Pitch circle diameter of the output bearing (table 24.1)
$M=$ Moment acting
$M_{0}=$ Allowable static overturning moment

Table 45.3

Rotation conditions of bearing	Lower limit value for fs
Normal	≥ 1.5
Vibrations / Impacts	≥ 2
High transmission accuracy	≥ 3

4.7 Angle of Inclination

The angle of inclination of the output flange, as a function of the tilting moment acting on the output bearing, can be calculated by means of equation 45.4:

Equation 45.4

$$
\gamma=\frac{M}{K_{B}}
$$

with:

y [arcmin]	$=$ Angle of inclination of the output flange
$M[\mathrm{Nm}]$	$=$ Tilting moment acting on the output bearing
$K B[\mathrm{Nm} / \operatorname{arcmin}]$	$=$ Moment stiffness of the output bearing (table 24.1)

4.8 Lubrication

Ratings and Lubricants

Harmonic Drive ${ }^{\circledR}$ products achieve the specified ratings and characteristics in the standard ambient temperature range ($0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$) when they are used with the lubricants named in the catalogue. Harmonic Drive AG can guarantee for the data specified in the catalogue only if a Harmonic Drive ${ }^{\otimes}$ grease or a mineral oil qualified for the specific product used. Lubricants and lubricant quantities other than recommended by Harmonic Drive AG should be qualified by means of prototype tests, as necessary.

The warranty becomes void when lubricants that have not been recommended in the Harmonic Drive ${ }^{\bullet}$ catalogue or that have not been approved in writing for the specific application are used.

4.8.1 Grease Lubrication

Application of Harmonic Drive ${ }^{\oplus}$ Lubricating Grease

Depending on product, size and if necessary ratio, the matching Harmonic Drive ${ }^{\circledR}$ grease should be selected. We recommend the application of the Harmonic Drive ${ }^{\oplus}$ lubricating greases according to the data in the tables 46.1 and 46.2 .

Caution!

The Harmonic Drive ${ }^{\oplus}$ high performance 4BNo. 2 grease becomes relatively thin during operation. Therefore the design must be oil-tight. Because of the special characteristics of this grease, a small base oil leakage at the oil seals can not completely be ruled out.

Table 46.1

Grease	Ratio ≥ 50														
	Size														
	8	11	14	17	20	25	32	40	45	50	58	65	80	90	100
Flexolub A1	-		Standard for CPU and CobaltLine												
SK-1A	-				Standard										
SK-2	Standard				-										
4BNo. 2	-				For heavy duty operation*										

Table 46.2

Notes:

* $=$ recommended for heavy duty operation or at operating temperatures ranging from $-10^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$
- = not approved

Table 47.1 gives some important information regarding Harmonic Drive ${ }^{\oplus}$ lubricating greases.

Table 47.1

Type	Harmonic Drive ${ }^{\text {® }}$ lubricating greases			
	Standard		Special	
	SK-1A	SK-2	Flexolub A1	4BNo. 2
Operating temperature range	$0^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+120^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C} \ldots+110^{\circ} \mathrm{C}$
Base oil	Mineral oil	Mineral oil	PAO / Ester oil	Synthetic oil
Thickener	Lithium soap	Lithium soap	Lithium soap	Urea
Consistency class (NLCI)	2	2	1	1-2
Base oil viscosity ($40^{\circ} \mathrm{C} ; 100^{\circ} \mathrm{C}$)	37; $5,9 \mathrm{~mm}^{2} / \mathrm{St}$	37; $5,9 \mathrm{~mm}^{2} / \mathrm{St}$	25; 5,2 $\mathrm{mm}^{2} / \mathrm{St}$	50; $12 \mathrm{~mm}^{2} / \mathrm{St}$
Drop point	$197^{\circ} \mathrm{C}$	$198^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$	$247^{\circ} \mathrm{C}$
Colour	yellow	green	magenta	pale yellow
Max. storage time in hermetically sealed container	5 years			
Ease of sealing (safety against grease- or base oil leakage at the oil seals)	+	+	+	+/-

Notes:

$+=$ Good
+/- = May be critical depending on design / mounting position / application, please contact Harmonic Drive AG

Safety data sheets and technical data sheets for the Harmonic Drive ${ }^{\oplus}$ lubricants are available from Harmonic Drive AG.

Special Operating Demands

Table 48.1 shows examples of lubricants for special operating demands. In individual cases other lubricants may be recommendable, and special limit values may have to be considered for product calculations at extended operating temperatures. Please ask Harmonic Drive AG for more information.

Table 48.1

Lubricants for special operating demands

Application	Type	Manufacturer, Designation	Operating temperature range ${ }^{17}$
Broadband temperature range	Grease	Harmonic Drive ${ }^{\text {, }}$, Flexolub-A1	$-40^{\circ} \mathrm{C} \ldots+120^{\circ}{ }^{\text {c }}{ }^{3}$
Low temperature	Grease Oil	Harmonic Drive ${ }^{\text {, }}$, Flexolub-M0	$-50^{\circ} \mathrm{C} \ldots+120^{\circ}(2) 5$)
High temperature	Grease Oil	Mobil, Mobil Grease 28 Mobil, Mobil SHC 626	$\begin{aligned} & -55^{\circ} \mathrm{C} \ldots+160^{\circ} \mathrm{C}^{2)} \\ & -15^{\circ} \mathrm{C} \ldots+140^{\circ} \mathrm{C}^{2)} \end{aligned}$
Food-/pharmaceutical industry	Grease	Bechem, Berulub FG-H 2 SL	$-40^{\circ} \mathrm{C} \ldots+120^{\circ}{ }^{2 / 4)}$

Notes:

1) Operating temperature = Lubricant temperature
2) User specific prototype tests recommended
${ }^{3)}$ Applicability confirmed for all Harmonic Drive ${ }^{\oplus}$ catalogue products with cup type Flexspline for size 14 and up. 1 kg bundles available at HDAC
3) NSF-H1 certification. Applicability confirmed for HFUC-XX, CPU-XX, HFUS-XX, CPL-XX, CHA-XX with $\mathrm{i}=100$ at full usage of the catalogue performance data. Please consult Harmonic Drive AG for i>100 applications. For food/ pharmaceutical compatibility, grease change is necessary for output- and support bearings, if used. 400 g bundles available at Harmonic Drive AG.
${ }^{5)}$ Recommended for applications requiring best possible efficiency at low temperatures. Not suitable for high output torque

4.8.2 Oil Lubrication

Harmonic Drive ${ }^{\oplus}$ units with oil lubrication are customer specific solutions. Oil quantity and change interval are specified individually.

Table 48.2

Shared lubricating oils

Manufacturer	Klüber	Mobil	Castrol	Shell
Designation	Syntheso D 68 EP	Mobilgear 600 XP 68	Optigear BM 68	Omala S2 G 68

Please note the information in section 5.5.

4.9 Axial Forces at the Wave Generator CSF-1U-CC, CSF-2XH-J

When a Harmonic Drive ${ }^{\oplus}$ Gear is used as a speed reducer (torque input via Wave Generator), the deflection of the Flexspline leads to an axial force acting on the Wave Generator. This axial force acts in the direction of the Flexspline diaphragm. When the Harmonic Drive ${ }^{\oplus}$ Component Set is used as a speed accelerating gear (reverse operation, e. g. when braking), the axial force acts in the opposite direction. In any case the axial force must be absorbed by the input shaft (motor shaft). The Wave Generator thus needs to be fixed on the input shaft in the axial direction. In closed Harmonic Drive ${ }^{\circledR}$ units and gearboxes the axial force is absorbed internally.

Illustration 49.1

Table 49.2

Ratio		
30	$F_{A X}=2 \cdot \frac{T}{D} \cdot \mu \cdot \tan 32^{\circ}$	[Equation 49.3]
50	$F_{A X}=2 \cdot \frac{T}{D} \cdot \mu \cdot \tan 30^{\circ}+2 \mu \mathrm{PF}$	[Equation 49.4]
$80 \ldots 160$	$F_{A X}=2 \cdot \frac{T}{D} \cdot \mu \cdot \tan 20^{\circ}+2 \mu \mathrm{PF}$	[Equation 49.5]

with:
$\mathrm{F}_{\mathrm{Ax}}=$ Axial force [N]
$D=($ Size $) \cdot 0.00254[\mathrm{~m}]$
$\mathrm{T}=$ Torque at the output [Nm]
$\mu=0.07$ Coefficient of friction
$2 \mu \mathrm{PF}=$ Additional force (only [SD) [N]
Example
Size 32 (CSD-32-50)
Output torque $=300 \mathrm{Nm}$
Coefficient of friction $\mu=0.07$
$F_{A X}=2 \cdot \frac{200 \mathrm{Nm}}{(32 \cdot 0.00254) \mathrm{m}} \cdot 0.07 \cdot \tan 30^{\circ}+16$
$F_{A x}=215 \mathrm{~N}$

Table 49.6

Size	14	17	20	25	32	40	50
$2 \mu \mathrm{PF}[\mathrm{N}]$ for CSD and SHD	2.1	4.1	5.6	9.8	16	24	39

5. Installation and Operation

5.1 Transport and Storage

Gears should be transported in the original packaging. If the gear is not put into service immediately on receipt, it should be stored in a dry area in the original packaging. The permissible storage temperature range is $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.

5.2 Gear Condition at Delivery

The gears are generally delivered according to the dimensions indicated in the confirmation drawing

Gears with Grease Lubrication

Units are supplied with grease lubricant as standard.

Gears with Oil Lubrication

Harmonic Drive ${ }^{\oplus}$ Units with oil lubrication are generally customer-specific solutions. Please follow the notes given on the confirmation drawing. The oil temperature during operation must not exceed $90^{\circ} \mathrm{C}$. Oil must be filled into the unit by the customer as the standard delivery does not include any oil lubricant.

Oil Quantity

The values specified in the confirmation drawing include the valid oil quantities to fill in. The oil quantity defined on the confirmation drawing must be obeyed in any case. Too much oil results in excessive heat production and early wear due to the thermal destruction of the oil. If the oil level is too low, this may lead to early wear as a result of lubricant deficiency.

5.3 Assembly Information

ADVICE

Screws which have been tightened by the gear manufacturer must not be loosened.

5.4 Recommended Tolerances for Assembly [SF-1U-CC, [SF-2XH-J

In order for the new features of Harmonic Drive ${ }^{\oplus}$ Units to be exploited fully, it is essential that the tolerances according to table 51.2 are observed for the input assembly.

Illustration 51.1

Table 51.2
[mm]

Size	$\mathbf{3 8}$	$\mathbf{5}$	$\mathbf{8}$	$\mathbf{1 1}$	$\mathbf{1 4}$
a	0.006	0.008	0.010	0.011	0.011
b	0.004	0.005	0.012	0.012	(0.007)
c	0.004	0.005	0.017	(0.008)	

The values in brackets are the recommended tolerances for component sets featuring a Wave Generator without Oldham coupling. The Oldham coupling serves to compensate for eccentricity of the input shaft and is available in the standard version. For the direct mounting of a Wave Generator without Oldham coupling (optional) on a motor shaft, the shaft tolerances should fulfill the DIN 42955 R standard.

5.5 Lubrication

Harmonic Drive ${ }^{\circledR}$ Gearboxes are delivered ready for immediate installation. They are supplied with lifetime lubricant which is a high performance grease that meets the specific requirements of the Harmonic Drive ${ }^{\circledR}$ gears. It guarantees constant accuracy of the gears for their whole life. A re-lubrication of the Units is not necessary.

5.5.1 Grease Lubrication CSF-1U-CC, CSF-2XH-J

Gearboxes are supplied with standard grease lubricant. Illustration 52.1 shows the sections where lubrication is required and which are filled with grease lubrication at the time of delivery. If no special arrangements are made the specially developed high perfomance grease 4 BNo .2 is used. If any other grease is used this will be indicated on the customer drawing.

Illustration 52.1

5.6 Preparation for Assembly

Assembly preparation

The gear assembly must be carried out very carefully and within a clean environment. Please make sure that during the assembly procedure no foreign particles enter the gear.

General information

Clean, degrease and dry all mating surfaces to ensure an adequate coefficient of friction. The values given in table 8 are valid for 12.9 quality screws which must be tightened by means of a torque wrench. Locking devices such as spring washers or toothed washers should not be used

Auxiliary materials for assembly

For the assembly, we recommend the application of the following auxiliary materials or the use of those with similar characteristics. Please pay attention to the application guidelines given by the manufacturer. Auxiliary materials must not enter the gear.

Surface sealing

- Loctite 5203
- Loxeal 28-10

Recommended for all mating surfaces, if the use of o-ring seals is not intended. Flanges provided with 0 -ring grooves must be sealed with sealing compound when a proper seal cannot be achieved using the 0 -ring alone.

Screw fixing

- Loctite 243

This adhesive ensures that the screw is fixed and also provides a good sealing effect. Loctite 243 is recommended for all screw connections.

Assembly paste

- Klüber Q NB 50

Recommended for o-rings which may come out of the groove during the assembly procedure. Before starting with the assembly you should spread some grease (which you can take from the gear) on all other o-rings.

Adhesives

- Loctite 638

Apply Loctite 638 to the connections between motor shaft and Wave Generator. You should make use of it only if this is specified in the confirmation drawing.

5.7.1 Motor Assembly CSF-1U-CC, CSF-2XH-J

The Gearboxes have been designed for simple motor assembly. This means that the Wave Generator is mounted directly on the motor shaft. When ordering please indicate which motor type is to be used, so that the Wave Generator can be manufactured to match. If required, units can be provided including the motor adaptor flange or with a ready assembled motor. In addition to the correct dimensioning of the motor, particular attention must be paid to the geometric tolerances of the motor output flange and motor shaft. The shaft and flange tolerances of the motor should fulfill the requirements of the DIN 42955 standard. To fully exploit the excellent performance characteristics of the units we recommend the use of motors fulfilling DIN 42955 R tolerances.

Adaptor Flange

The transmission accuracy of the gearbox is dependent on the manufacturing accuracy of the motor adaptor flange. Table 51.2 shows the recommended tolerances for the motor with assembled adaptor flange.

ADVICE

For the manufacturing of the adaptor flange we recommend the dimensions and tolerances given in table 51.2. To achieve the given value for concentricity and run out we recommend that the motor- and gear side flange surfaces are manufactured at a single clamping.

5.7.2 Mounting the Wave Generator (WG) to the Motor Shaft

Illustration 54.1 shows some possibilities how to assemble the gearboxes to the motor. If the designs of the components differ from those shown in illustration 54.1, please follow the instructons as appropriate.

Removal of the Protection Cap

If a protection cap is mounted, please remove it.

Assembly of the Adaptor Flange

Connect the adaptor flange(s) (1) according to illustration 54.1.

Grease Quantity Check

Please refer to section 5.5. for more information

- The axial position of the Wave Generator in the gearbox is critical for the correct operation of the unit. Please check the correct position of the Wave Generator against the confirmation drawing.
- Push the greased Wave Generator (2) onto the motor shaft according to the assembly dimension given in the confirmation drawing. If there is no assembly value given, the Wave Generator must be moved until it reaches the shaft collar.
- Fix the Wave Generator (2) with the set screw (3). Set screw tightening torques are listed in table 55.1.
- Eventually seal the flange (1) with the set screw (4). Please consider section 5.6. If a glued shaft-hub connection is used, please pay attention to the information given in section 5.6.

Size	$\mathbf{3 B}$	$\mathbf{5}$	$\mathbf{8}$	$\mathbf{1 1}$	$\mathbf{1 4}$
Number of Bolts	1	2	2	$\mathbf{2}$	
Bolt Size	M 1.6	M 2	M 2	\mathbf{M}	
Tightening Torque	0.09	0.19	0.19	M 3	

5.7.3 Check before Assembly of the Wave Generator (WG)

- Final check of position of the Wave Generator. For some clamping elements an axial movement may occur during tightening. Please take account of this effect when positioning the Wave Generator on the shaft.
- Check whether the WG is lubricated in accordance with illustration 52.1. When the gear is oil lubricated, fill with the prescribed oil quantity.

5.7.4 Assembly of the Wave Generator (WG) into the Flexspline (FS)

When the Wave Generator is assembled into the Flexspline please consider that the parts must not be tilt during assembly. By parallel assemby it is ensured that the teeth of Flexspline and Circular Spline mesh symmetrically.

Alternatively the assembly can be executed during slowly rotation of the input shaft ($\mathrm{n}<10 \mathrm{rpm}$). This method eases the assembly.

5.7.5 Assembly Control

Very rarely, an eccentric tooth mesh, called dedoidal, may occur.
The correct assembly can be checked as follow:

- Check the running behaviour by rotating the input shaft (in case of types with input shaft).

Alternatively you may rotate the output flange.
If you notice torque variations these may be caused by eccentric tooth mesh.

- Check the running behaviour and the motor current while the motor is rotating. Strong fluctuations in the motor current and/or an excessive no-load current may be the result of an eccentric tooth mesh.

In case of a dedoidal assembly you can avoid permanent damage to the gear if the wrong installation is recognized by means of the above mentioned inspection. The problem can be solved by disassembling the gear followed by a new assembly.

Illustration 55.1

5.7.6 Assembly of the Output Flange

Table 56.1

Size	5	8	11	14
Designation (III. 56.3)	B			
Number of Bolts	3	4	6	6
Bolt Size	M2	M3	M3	M4
Bolt pitch diameter [mm]	9.8	15.5	20.5	25.5
Tightening Torque / Bolt [Nm]	0.54	2	2	4.6
Torque transmitting capacity" [Nm]	2	13	26	55

5.7.7 Assembly of the Housing

Table 56.2

Size	3B	5	8	11	14	5	8	11	14
Version	1U. 1U-CC. 1U-F. 1U-CC-F					2XH-F. 2XH-J			
Designation (III. 56.3)	A								
Number of Bolts	4	4	4	4	4	2	2	2	2
Bolt Size	M1.6	M2	M3	M4	M5	M2	M3	M3	M4
Bolt pitch diameter [mm]	15	23	35	46	58	9.8	15.5	20.5	25.5
Tightening Torque / Bolt [Nm]	0.26	0.25	0.85	2.0	4.0	0.54	2.0	2.0	4.6
Torque transmitting capacity ${ }^{1)}$ [Nm]	3.0	3.5	12	29	57	2	13	26	55

${ }^{1)}$ The tables are valid for completely degreased surfaces (friction coefficient $\mu_{k}=0.15$) and metric socket head cap screws according to EN ISO 476212.9 quality, untreated, oiled, with $\mu_{\text {ges }}=0,12$.

Illustration 56.3

2XH-F, 2XH-J

6. Glossary

6.1 Technical Data

AC Voltage constant $\mathrm{k}_{\mathrm{EM}}\left[\mathrm{V}_{\text {rms }} / 1000 \mathrm{rpm}\right]$
Effective value of the induced motor voltage measured at the motor terminals at a speed of 1000 rpm and an operating temperature of $20^{\circ} \mathrm{C}$.

Ambient operating temperature [${ }^{\circ} \mathrm{C}$]

The intended operating temperature for the operation of the drive.

Average input speed (grease lubrication) $n_{a v(\max)}[\mathrm{rpm}]$
Maximum permissible average gear input speed for grease lubrication.

Average input speed (oil lubrication) $n_{\text {av (max) }}$ [rpm]
Maximum permissible average gear input speed for oil lubrication.

Average torque T_{A} [Nm]
When a variable load is applied to the gear, an average torque should be calculated for the complete operating cycle.
This value should not exceed the specified T_{A} limit.

Backlash (Harmonic Planetary gears) [arcmin]

When subjected to the rated torque, Harmonic Planetary gears display characteristics shown in the hysteresis curve. When a torque is applied to the output shaft of the gear with the input shaft locked, the torque-torsion relationship can be measured at the output. Starting from point 0 the graph follows successive points A-B-A-B-A A where the value $B-B$ is defined as the backlash or hysteresis.

Brake closing time t_{c} [ms]
Delay time to close the brake.

Brake current to hold $I_{\mathrm{HBr}}\left[\mathrm{A}_{\mathrm{DC}}\right]$
Current for applying the brake.

Brake current to open $I_{\text {OBr }}\left[A_{\text {DC }}\right]$
Current required to open the brake.

Brake holding torque $\mathrm{T}_{\mathrm{H}}[\mathrm{Nm}]$
Torque the actuator can withstand when the brake is applied, with respect to the output.

Brake opening time t_{0} [ms]
Delay time for opening the brake.

Brake voltage $U_{\text {Br }}$ [VDC]
Terminal voltage of the holding brake.

Collision torque T_{M} [Nm]

In the event of an emergency stop or collision, the Harmonic Drive ${ }^{\oplus}$ Gearing may be subjected to a brief collision torque. The magnitude and frequency of this collision torque should be kept tom a minimum and under no circumstances should the collision torque occur during the normal operating cycle.

Continuous stall current $\mathrm{I}_{0}\left[\mathrm{~A}_{\mathrm{rms}}\right]$
Effective value of the motor phase current to produce the stall torque.

Continuous stall torque $\mathrm{T}_{0}[\mathrm{Nm}]$
Allowable actuator stall torque.

Demagnetisation current $\mathrm{I}_{\mathrm{E}}\left[\mathrm{A}_{\text {rms }}\right]$
Current at which rotor magnets start to demagnetise.

Dynamic axial load $\mathrm{F}_{\text {Adyn(max) }}[\mathrm{N}]$
With bearing rotating this is the maximum allowable axial load, with no additional radial forces or tilting moments applied.

Dynamic load rating C [N]

Maximum dynamic load that can be absorbed by the output bearing before permanent damage may occur.

Dynamic radial load $\mathrm{F}_{\mathrm{Rdyn}(\text { max })}[\mathrm{N}]$

With bearing rotating this is the maximum allowable radial load, with no additional axial forces or tilting moments applied.

Dynamic tilting moment $\mathrm{M}_{\operatorname{dyn}(\text { max })}[\mathrm{Nm}]$
With the bearing rotating this is the maximum allowable tilting moment, with no additional axial forces or radial forces applied.

Electrical time constant $\tau_{e}[s]$

The electrical time constant is the time required for the current to reach 63% of its final value.

Hollow shaft diameter $d_{H}[m m]$
Free inner diameter of the continuous axial hollow shaft.

Inductance (L-L) $\mathrm{L}_{\mathrm{L}-\mathrm{L}}[\mathrm{mH}]$
Terminal inductance calculated without taking into account the magnetic saturation of the active motor parts.

Lost Motion (Harmonic Drive ${ }^{\oplus}$ Gearing) [arcmin]

 Harmonic Drive ${ }^{\oplus}$ Gearing exhibits zero backlash in the teeth. Lost motion is the term used to characterise the torsional stiffness in the low torque region.The illustration shows the angle of rotation φ measured against the applied output torque as a hysteresis curve, with the Wave Generator locked. The lost motion measurement of the gear is taken with an output torque of about $\pm 4 \%$ of the rated torque.

Maximum DC bus voltage $U_{D C(\text { max })}[V D C]$
The maximum DC bus power supply for the correct operation of the actuator. This value may only be exceeded for a short period during the braking or deceleration phase.

Maximum hollow shaft diameter $\mathrm{d}_{\mathrm{H}(\max)}[\mathrm{mm}]$
For gears with a hollow shaft, this value is the maximum diameter of the axial hollow shaft.

Maximum input speed (grease lubrication) $\mathrm{n}_{\text {in (max) }}[\mathrm{rpm}]$
Maximum allowed input speed for gearing with grease lubrication.

Maximum input speed (oil lubrication) $n_{\text {in(max) }}[\mathrm{rpm}]$
Maximum allowed input speed for gearing with oil lubrication.

Maximum motor speed $\mathrm{n}_{\text {max }}$ [rpm]
The maximum allowable motor speed.

Maximum output speed $n_{\text {max }}$ [rpm]
The maximum output speed. Due to heating issues, this may only be momentarily applied during the operating cycle. The maximum output speed can occur any number of times as long as the rated speed is greater than the permissible continuous operation calculated in the duty cycle.

Maximum output torque $\mathrm{T}_{\max }[\mathrm{Nm}]$

Specifies the maximum allowable acceleration and deceleration torques. For highly dynamic processes, this is the maximum torque available for a short period. The maximum torque can be parameterized by the control unit where the maximum current can be limited. The maximum torque can be applied as often as desired, as long as the average torque is within the permissible continuous operation calculated in the duty cycle.

Maximum power $\mathrm{P}_{\max }[\mathrm{W}]$
Maximum power output.

Mechanical time constant τ_{m} [s]
The mechanical time constant is the time required to reach 63% of its maximum rated speed in a no-load condition.

Momentary peak torque $T_{M}[\mathrm{Nm}]$
In the event of an emergency stop or collision, the Harmonic Drive ${ }^{\oplus}$ Gearing may be subjected to a brief collision torque. The magnitude and frequency of this collision torque should be kept tom a minimum and under no circumstances should the momentary peak torque occur during the normal operating cycle.

Moment of inertia J [$\left.\mathrm{kgm}^{2}\right]$
Mass moment of inertia at motor side.

Moment of inertia $J_{\text {in }}\left[\mathrm{kgm}^{2}\right]$
Mass moment of inertia of the gearing with respect to the input.

Moment of inertia $\mathrm{J}_{\text {out }}\left[\mathrm{kgm}^{2}\right]$
Mass moment of inertia with respect to the output.

Motor terminal voltage (Fundamental wave only) $\mathrm{U}_{\mathrm{M}}\left[\mathrm{V}_{\mathrm{rms}}\right]$

Required fundamental wave voltage to achieve the specified performance. Additional power losses can lead to restriction of the maximum achievable speed.

Number of pole pairs p

Number of magnetic pole pairs on the rotor of the motor.

Offset R [mm]

Distance between output bearing and contact point of load.

Pitch circle diameter $d_{p}[m m]$

Pitch circle diameter of the output bearing

Protetcion IP

The degree of protection according to EN 60034-5 provides suitability for various environmental conditions.

Rated current $I_{N}[A]$

Rms value of the sinusoidal current when driven at rated torque and rated speed.

Rated motor speed $n_{N}[r p m]$

The motor speed which can be continuously maintained when driven at rated torque T_{N}, when mounted on a suitably dimensioned heat sink.

Rated power $\mathrm{P}_{\mathrm{N}}[\mathrm{W}]$
Output power at rated speed and rated torque.

Rated speed n_{N} [rpm]
The output speed which can be continuously maintained when driven at rated torque T_{N}, when mounted on a suitably dimensioned heat sink.

Rated torque $T_{N}[\mathrm{Nm}]$, Servo

The output torque which can be continuously transmitted when driven at rated input speed, when mounted on a suitably dimensioned heat sink.

Rated torque T_{N} [Nm], Mechanic

The rated torque is a reference torque for the calculation of the gear life. When loaded with the rated torque and running at rated speed the gear will reach the average life L_{50}. The rated torque T_{N} is not used for the dimensioning of the gear.

Rated voltage $\mathrm{U}_{\mathrm{N}}\left[\mathrm{V}_{\mathrm{rms}}\right]$
Supply voltage for operation with rated torque and rated speed.

Ratio i [

The ratio is the reduction of input speed to the output speed
Note for Harmonic Drive ${ }^{\ominus}$ transmission: The standard version of the wave is generating the drive element, the output element of the flexspline and the circular Spline is fixed to the housing. Since the direction of rotation of the drive (Wave Generator) to output reverses (Flexspline), a negative ratio for results Calculations in which the direction of rotation must be considered.

Repeatability [arcmin]

The repeatability of the gear describes the position difference measured during repeated movement to the same desired position from the same direction. The repeatability is defined as half the value of the maximum difference measured, preceded by a \pm sign.

Repeatable peak torque $T_{R}[\mathrm{Nm}]$

Specifies the maximum allowable acceleration and braking torques. During the normal operating cycle the repeatable peak torque T_{R} should be not be exceeded.

Resistance (L-L, $20^{\circ} \mathrm{C}$) $\mathrm{R}_{\mathrm{LL}}[\Omega]$
Winding resistance measured between two conductors at a winding temperature of $20^{\circ} \mathrm{C}$.

Size

1) Actuators / Gears with Harmonic Drive ${ }^{\oplus}$ gears or Harmonic Planetary gears

The frame size is derived from the pitch circle diameter of the gear teeth in inches multiplied by 10 .

2) CHM Servo motor series

The size of the CHM servo motors is derived from the stall torque in Ncm .

3) Direct drives from the TorkDrive ${ }^{\oplus}$ series

The size of the TorkDrive ${ }^{\oplus}$ series is the outer diameter of theiron core of the stator.

Static load rating $C_{0}[N]$

Maximum static load that can be absorbed by the output bearing before permanent damage may occur.

Static tilting moment $\mathrm{M}_{0}[\mathrm{Nm}]$
With the bearing stationary this is the maximum allowable radial load, with no additional axial forces or tilting moments applied.

Tilting moment stiffness K_{B} [Nm/arcmin]
The tilting angle of the output bearing at an applied moment load.

Torque constant (motor) $\mathrm{k}_{\mathrm{TM}}\left[\mathrm{Nm} / \mathrm{A}_{\text {rms }}\right]$
Quotient of stall torque and stall current.

Torque constant (output) $\mathrm{k}_{\text {Tout }}\left[\mathrm{Nm} / \mathrm{A}_{\text {rms }}\right]$
Quotient of stall torque and stall current, taking into account the transmission losses.

Torsional stiffness
 (Harmonic Drive ${ }^{\oplus}$ Gears) $\mathrm{K}_{3}[\mathrm{Nm} / \mathrm{rad}]$

The amount of elastic rotation at the output for a given torque and the Wave Generator blocked. The torsional stiffness K_{3} describes the stiffness above a defined reference torque where the stiffness is almost linear. Values below this torque can be requested or found on our web site.

The value given for the torsional stiffness K_{3} is an average that has been determined during numerous tests. The limit torques T_{1} and T_{2} and calculation example for the total torsional angle Gesamtverdrehwinkels can be found in the secondary technical documentation.

Torsional stiffness
 (Harmonic Planetary gears) K [Nm/rad]

The amount of elastic rotation at the output for a given torque and blocked input shaft. The torsional rigidity of the Harmonic Planetary gear describes the rotation of the gear above a reference torque of 15% of the rated torque. In this area the torsional stiffness is almost linear.

Transmission accuracy [arcmin]

The transmission accuracy of the gear represents a linearity error between input and output angle. The transmission accuracy is measured for one complete output revolution using a high resolution measurement system. The measurements are carried out without direction reversal. The transmission accuracy is defined as the sum of the maximum positive and negative differences between theoretical and actual output rotation angle.

$\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}=$ Torsional stiffness, w = Output angle
$\varphi 1=$ Torsion angle, with output torque T_{1}
$\varphi 2$ = Torsion angle, with output torque T_{2}

Weight m [kg]
The weight specified in the catalog is the net weight without packing and only applies to standard versions.

6.2 Labelling, Guidelines and Regulations

CE-Marking

With the CE marking, the manufacturer or EU importer declares in accordance with EU regulation, that by affixing the CE mark the product meets the applicable requirements in the harmonization legislation established the Community.

REACH Regulation

REACH is a European Community Regulation on chemicals. REACH stands for Registration, Evaluation, Authorization and Restriction of Chemicals.

REACH
Verordnung Nr. 1907/2006

RoHS EU Directive
The RoHS EU Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment.
...just move it!

Deutschland
Harmonic Drive AG $\quad T+4964315008-0$
$F+496431$ 5008-119

